DOI QR코드

DOI QR Code

Organocatalytic Enantioselective Michael Addition of α-Nitroacetate to α,β-Unsaturated Enones: A Route to Chiral γ-Nitro Ketones and δ-Keto Esters

  • Received : 2010.10.12
  • Accepted : 2010.11.02
  • Published : 2011.01.20

Abstract

The catalytic enantioselective conjugate addition reaction of $\alpha$-nitroacetate to $\alpha,\beta$-unsaturated enones promoted by chiral bifunctional organocatalysts is described. The treatment of $\alpha$-nitroacetate to $\alpha,\beta$-unsaturated enones afforded the corresponding Michael adducts with high enantioselectivity. The conjugate addition adducts are easily converted to chiral $\gamma$-nitro ketones and $\delta$-keto esters.

Keywords

References

  1. Leonard, J. Contemp. Org. Synth. 1994, 1, 387. https://doi.org/10.1039/co9940100387
  2. Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Pergamon: Oxford, 1992.
  3. Christoffers, J.; Baro, A. Angew. Chem. Int. Ed. 2003, 42, 1688. https://doi.org/10.1002/anie.200201614
  4. Berner, O. M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002, 1877.
  5. Krause, N. Hoffmann-Roder, A. Synthesis 2001, 171.
  6. Connon, S. J. Synlett 2009, 354.
  7. Yu, X.; Wang, W. Chem. Asian J. 2008, 3, 516. https://doi.org/10.1002/asia.200700415
  8. Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713. https://doi.org/10.1021/cr068373r
  9. Tylor, M. S.; Jacobson, E. N. Angew. Chem. Int. Ed. 2006, 45, 1520. https://doi.org/10.1002/anie.200503132
  10. Connon, S. J. Angew. Chem. Int. Ed. 2006, 45, 3909. https://doi.org/10.1002/anie.200600529
  11. Connon, S. J. Chem. Eur. J. 2006, 12, 5418.
  12. Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999. https://doi.org/10.1002/adsc.200606074
  13. Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299. https://doi.org/10.1039/b511216h
  14. Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2004, 43, 5138. https://doi.org/10.1002/anie.200400650
  15. Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701.
  16. Almasi, D.; Alonso, D. A.; Najera, D. Tetrahedron: Asymmetry 2007, 18, 299. https://doi.org/10.1016/j.tetasy.2007.01.023
  17. Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New York, 2001.
  18. Calderari, G.; Seebach, D. Helv. Chim. Acta 1985, 68, 1592. https://doi.org/10.1002/hlca.19850680611
  19. Rosini, G.; Ballini, R. Synthesis 1988, 833.
  20. Barrett, A. G. M.; Graboski, G. Chem. Rev. 1986, 86, 751. https://doi.org/10.1021/cr00075a002
  21. Ballini, R.; Petrini, M. Tetrahedron 2004, 60, 1017. https://doi.org/10.1016/j.tet.2003.11.016
  22. Czekelius, C.; Carreira, E. M. Angew. Chem. Int. Ed. 2005, 44, 612. https://doi.org/10.1002/anie.200461879
  23. Ballini, R.; Palmieri, A.; Barboni, L. Chem. Commun. 2008, 2975.
  24. Ballini, R.; Bosica, G.; Fiorini, D.; Palmieri, A.; Petrini, M. Chem. Rev. 2005, 105, 933. https://doi.org/10.1021/cr040602r
  25. Mei, K.; Jin, M.; Zhang, S.; Lo, P.; Liu, W.; Chen, X.; Xue, F.; Duan, W.; Wang, W. Org. Lett. 2009, 11, 2864. https://doi.org/10.1021/ol9010322
  26. Dong, L.-t.; Lu, R.-j.; Du, Q.-s.; Zhang, J.-m.; Liu, S.-p.; Xuan, Y.-n.; Yan, M. Tetrahedron 2009, 65, 4124. https://doi.org/10.1016/j.tet.2009.03.055
  27. Li, P.; Wang, Y,; Liang, X.; Ye, J. Chem. Commun. 2008, 3302.
  28. Vakulya, B.; Varga, S.; Soos, T. J. Org. Chem. 2008, 73, 3475. https://doi.org/10.1021/jo702692a
  29. Malmgren, M.; Granander, J.; Amedjkouh, M. Tetrahedron: Asymmetry 2008, 19, 1934. https://doi.org/10.1016/j.tetasy.2008.07.007
  30. Motchell, C. E. T.; Brenner, S. E.; Garcia-Fortanet, J.; Ley, S. V. Org. Biomol. Chem. 2006, 4, 2039. https://doi.org/10.1039/b601877g
  31. Motchell, C. E. T.; Brenner, S. E.; Ley, S. V. Chem. Commun. 2005, 5346.
  32. Taylor, M. S.; Zalatan, D. N.; Lerchner, A. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2005, 127, 1313. https://doi.org/10.1021/ja044999s
  33. Wang, J.; Li, H.; Zu, L.; Xie, H.; Duan, W.; Wang, W. J. Am. Chem. Soc. 2006, 128, 12652. https://doi.org/10.1021/ja065187u
  34. Prieto, A.; Halland, N.; Jorgensen, K. A. Org. Lett. 2005, 7, 3897. https://doi.org/10.1021/ol051301m
  35. Halland, N.; Hazell, R. G.; Jorgensen, K. A. J. Org. Chem. 2002, 67, 8331. https://doi.org/10.1021/jo0261449
  36. Kim, J.; De Castro, K. A.; Lim, M.; Rhee, H. Tetrahedron 2010, 66, 3995. https://doi.org/10.1016/j.tet.2010.04.062
  37. Ramachandran, P. V.; Pitre, S.; Brown, H. J. Org. Chem. 2002, 67, 5315. https://doi.org/10.1021/jo025594y
  38. Yang, Y.-Q.; Zhao, G. Chem. Eur. J. 2008, 14, 10888. https://doi.org/10.1002/chem.200801749
  39. Wascholowski, V.; Knudsen, K. R.; Mitchell, C. E. T.; Ley, S. V. Chem. Eur. J. 2008, 14, 6155. https://doi.org/10.1002/chem.200800673
  40. Halland, N.; Aburel, P. S.; Jorgensen, K. A. Angew. Chem. Int. Ed. 2003, 42, 661. https://doi.org/10.1002/anie.200390182
  41. Wang, X.; Adachi, S.; Iwai, H.; Takatsuki, H.; Fujita, K.; Kubo, M.; Oku, A.; Harada, T. J. Org. Chem. 2003, 68, 10046. https://doi.org/10.1021/jo035379x
  42. Shi, Y.; Wulff, W. D.; Yap, G. P. A.; Rheingold, A. L. Chem. Commun. 1996, 2601.
  43. Xu, L.-W.; Lu, Y. Chem. Commun. 2009, 1807.
  44. Chen, Y.-C. Synlett 2008, 1919.
  45. Peng, F.; Shao, Z. J. Mol. Cat. A: Chem. 2008, 285, 1. https://doi.org/10.1016/j.molcata.2007.12.027
  46. Bartoli, G.; Melchiorre, P. Synlett 2008, 1759.
  47. Xu, L.-W.; Lu. Y. Org. Biomol. Chem. 2008, 6, 2047. https://doi.org/10.1039/b803116a
  48. Grieco, P. A. Organic Synthesis in Water; Blackie Academic & Profesional: London, 1998.
  49. Lindstrom, U. M. Chem. Rev. 2002, 102, 2751. https://doi.org/10.1021/cr010122p
  50. Li, C.-J. Chem. Rev. 2005, 105, 3095. https://doi.org/10.1021/cr030009u
  51. Li, C.-J.; Cheng, L. Chem. Soc. Rev. 2006, 35, 68-82. https://doi.org/10.1039/b507207g
  52. Raj, M.; Singh, V. K. Chem. Commun. 2009, 6687.
  53. Hayashi, Y.; Sumiya, T.; Takahashi, J.; Gotoh, H.; Urashima, T.; Shoji, M. Angew. Chem. Int. Ed. 2006, 45, 958. https://doi.org/10.1002/anie.200502488
  54. Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F., III. J. Am. Chem. Soc. 2006, 128, 734. https://doi.org/10.1021/ja0573312
  55. Kim, D. Y.; Park, E. J. Org. Lett. 2002, 4, 545. https://doi.org/10.1021/ol010281v
  56. Park, E. J.; Kim, M. H.; Kim, D. Y. J. Org. Chem. 2004, 69, 6897. https://doi.org/10.1021/jo0401772
  57. Park, E. J.; Kim, H. R.; Joung, C. W.; Kim, D. Y. Bull. Korean Chem. Soc. 2004, 25, 1451. https://doi.org/10.5012/bkcs.2004.25.10.1451
  58. Kim, S. M.; Kim, H. R.; Kim, D. Y. Org. Lett. 2005, 7, 2309. https://doi.org/10.1021/ol050413a
  59. Kim, H. R.; Kim, D. Y. Tetrahedron Lett. 2005, 46, 3115. https://doi.org/10.1016/j.tetlet.2005.02.164
  60. Kang, Y. K; Cho, M. J.; Kim, S. M.; Kim, D. Y. Synlett 2007, 1135.
  61. Cho, M. J.; Kang, Y. K.; Lee, N. R.; Kim, D. Y. Bull. Korean Chem. Soc. 2007, 28, 2191. https://doi.org/10.5012/bkcs.2007.28.12.2191
  62. Kim, S. M.; Kang, Y. K.; Cho, M. J.; Mang, J. Y.; Kim, D. Y. Bull. Korean Chem. Soc. 2007, 28, 2435. https://doi.org/10.5012/bkcs.2007.28.12.2435
  63. Kang, Y. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2008, 29, 2093. https://doi.org/10.5012/bkcs.2008.29.11.2093
  64. Lee, N. R.; Kim S. M.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 829. https://doi.org/10.5012/bkcs.2009.30.4.829
  65. Lee, J. H.; Kim, D. Y. Adv. Synth. Catal. 2009, 351, 1779. https://doi.org/10.1002/adsc.200900268
  66. Kang, Y. K.; Kim, D. Y. J. Org. Chem. 2009, 74, 5734. https://doi.org/10.1021/jo900880t
  67. Kang, Y. K.; Kim, S. M.; Kim, D. Y. J. Am. Chem. Soc. 2010, 132, 11847. https://doi.org/10.1021/ja103786c
  68. Lee, J. H.; Kim, D. Y. Synthesis 2010, 1860.
  69. Kang, Y. K.; Kim, D. Y. Curr. Org. Chem. 2010, 14, 917. https://doi.org/10.2174/138527210791111768
  70. Kim, D. Y.; Huh, S. C.; Kim, S. M. Tetrahedron Lett. 2001, 42, 6299. https://doi.org/10.1016/S0040-4039(01)01237-0
  71. Kim, D. Y.; Huh, S. C. Tetrahedron 2001, 57, 8933. https://doi.org/10.1016/S0040-4020(01)00891-2
  72. Kim, D. Y.; Kim, S. M.; Koh, K. O.; Mang, J. Y. Bull. Korean Chem. Soc. 2003, 24, 1425. https://doi.org/10.5012/bkcs.2003.24.10.1425
  73. Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2006, 47, 4565. https://doi.org/10.1016/j.tetlet.2006.05.003
  74. Lee, J. H.; Bang, H. T.; Kim, D. Y. Synlett 2008, 1821.
  75. Mang, J. Y.; Kim, D. Y. Bull. Korean Chem. Soc. 2008, 29, 2091. https://doi.org/10.5012/bkcs.2008.29.11.2091
  76. Kim, S. M.; Lee, J. H.; Kim, D. Y. Synlett 2008, 2659.
  77. Jung, S. H.; Kim, D. Y. Tetrahedron Lett. 2008, 49, 5527. https://doi.org/10.1016/j.tetlet.2008.07.041
  78. Kim, D. Y. Bull. Korean Chem. Soc. 2008, 29, 2036. https://doi.org/10.5012/bkcs.2008.29.10.2036
  79. Mang, J. Y.; Kwon, D. G.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 249. https://doi.org/10.5012/bkcs.2009.30.1.249
  80. Kwon, B. K.; Kim, S. M.; Kim, D. Y. J. Fluorine Chem. 2009, 130, 759. https://doi.org/10.1016/j.jfluchem.2009.06.002
  81. Mang, J. Y.; Kwon, D. G.; Kim, D. Y. J. Fluorine Chem. 2009, 130, 259. https://doi.org/10.1016/j.jfluchem.2008.11.001
  82. Oh, Y.; Kim, S. M.; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4674. https://doi.org/10.1016/j.tetlet.2009.06.003
  83. Kwon, B. K.; D. Y. Kim, Bull. Korean Chem. Soc. 2009, 30, 1441. https://doi.org/10.5012/bkcs.2009.30.7.1441
  84. Kang, S. H.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 1439. https://doi.org/10.5012/bkcs.2009.30.7.1439
  85. Kang, S. H.; Kang, Y. K.; Kim, D. Y. Tetrahedron 2009, 65, 5676. https://doi.org/10.1016/j.tet.2009.05.037
  86. Moon, H. W.; Cho, M. J.; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4896. https://doi.org/10.1016/j.tetlet.2009.06.056
  87. Moon, H. W.; Kim, D. Y. Tetrahedron Lett. 2010, 51, 2906. https://doi.org/10.1016/j.tetlet.2010.03.105
  88. Brunner, H.; Buegler, J.; Nuber, B.; Tetrahedron: Asymmetry 1995, 6, 1699. https://doi.org/10.1016/0957-4166(95)00215-B
  89. Oliva, C. G.; Silva, A. M. S.; Resende, D. I. S. P.; Paz, F. A. A.; Cavaleiro, J. A. S. Eur. J. Org. Chem. 2010, 3449.
  90. Arai, T.; Watanabe, M.; Fujiwara, A.; Yokoyama, N.; Yanagisawa, A. Angew. Chem. Int. Ed. 2006, 45, 6978.
  91. Arai, T.; Watanabe, M.; Yanagisawa, A. Org. Lett. 2007, 9, 3595. https://doi.org/10.1021/ol7014362
  92. Liu, Q.-Z.; Wang, X.-L.; Luo, S.-W.; Zheng, B. L.; Qin, D.-B. Tetrahedron Lett. 2008, 49, 7434. https://doi.org/10.1016/j.tetlet.2008.10.085
  93. Halland, N.; Pompiliu S. Aburel, P. S.; Jorgensen, K. A. Angew. Chem. Int. Ed. 2003, 42, 661. https://doi.org/10.1002/anie.200390182
  94. Tsogoeva, S. B.; Wei, S. Chem. Commun. 2006, 1451.
  95. Xue, F.; Zhang, S.; Duan, W.; Wang, W. Adv. Synth. Catal. 2008, 350, 2194. https://doi.org/10.1002/adsc.200800445
  96. Lu, A.; Gao, P.; Wu, Y.; Wang, Y.; Zhou, Z.; Tang, C. Org. Biomol. Chem. 2009, 7, 3141. https://doi.org/10.1039/b905306a
  97. Rasappan, R.; Reiser, O. Eur. J. Org. Chem. 2009, 1305.
  98. Shen, B.; Jhonston, J. N. Org. Lett. 2008, 10, 4397. https://doi.org/10.1021/ol801797h

Cited by

  1. ChemInform Abstract: Organocatalytic Enantioselective Michael Addition of α-Nitroacetate to α,β-Unsaturated Enones: A Route to Chiral γ-Nitro Ketones and δ-Keto Esters. vol.42, pp.24, 2011, https://doi.org/10.1002/chin.201124020
  2. Enantioselective Conjugate Addition of 4-Hydroxycoumarin to Enones Catalyzed by Binaphthyl-Modified Primary Amine Organocatalyst vol.33, pp.6, 2012, https://doi.org/10.5012/bkcs.2012.33.6.1825
  3. Enantioselective Michael Addition of 2-Hydroxy-1,4-naphthoquinone to β,γ-Unsaturated α-Keto Esters Catalyzed by Binaphthyl-Modified Squaramide vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1619
  4. Enantioselective Direct α-Amination of Aromatic Ketones Catalyzed by Binaphthyl-Modified Primary Amine vol.34, pp.7, 2013, https://doi.org/10.5012/bkcs.2013.34.7.1955
  5. Organocatalytic Enantioselective Michael Addition of Silyl Malonate to α,β-Unsaturated Enones: One-pot Synthesis of Chiral δ-Keto Esters vol.34, pp.9, 2013, https://doi.org/10.5012/bkcs.2013.34.9.2569
  6. A polystyrene-supported 9-amino(9-deoxy)epi quinine derivative for continuous flow asymmetric Michael reactions vol.13, pp.14, 2015, https://doi.org/10.1039/C5OB00325C
  7. Organocatalytic Asymmetric Michael Addition of α-Fluoro β-Ketophosphonate to Nitroalkenes vol.36, pp.12, 2015, https://doi.org/10.1002/bkcs.10580
  8. Diastereo- and Enantioselective Conjugate Addition of 3-Chlorooxindoles to Nitroalkenes Catalyzed by Binaphthyl-modified Organocatalyst vol.36, pp.5, 2015, https://doi.org/10.1002/bkcs.10264
  9. Diastereo- and Enantioselective Conjugate Addition of α-Substituted Cyanoacetates to Maleimides Catalyzed by Binaphthyl-based Thiourea vol.36, pp.9, 2015, https://doi.org/10.1002/bkcs.10439
  10. Microwave-Assisted Organocatalytic Synthesis of Tetrahydroquinolines via Hydride Transfer and Cyclization vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1773
  11. Enantioselective Conjugate Addition of Anthrone to Nitroalkenes Catalyzed by Binaphthyl-Modified Organocatalyst vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2875
  12. Catalytic Enantioselective Fluorination of α-Cyanosulfones in the Presence of Chiral Palladium Complexes vol.33, pp.8, 2012, https://doi.org/10.5012/bkcs.2012.33.8.2481
  13. Organocatalytic Asymmetric Conjugate Addition of 3-Alkyl-Substituted Oxindoles to Vinyl Ketones vol.33, pp.10, 2011, https://doi.org/10.5012/bkcs.2012.33.10.3171
  14. Organocatalytic Asymmetric Michael Addition of 1,3-Cyclohexanedione to β,γ-Unsaturated α-Keto Esters vol.33, pp.11, 2011, https://doi.org/10.5012/bkcs.2012.33.11.3537
  15. Organocatalytic enantioselective decarboxylative Michael addition of β-ketoacids to α,β-unsaturated ketones vol.3, pp.5, 2011, https://doi.org/10.1039/c2ra21945j
  16. Organocatalytic Asymmetric Michael Addition of 1,3-Cyclohexanedione to Benzylidenemalonitriles vol.35, pp.1, 2011, https://doi.org/10.5012/bkcs.2014.35.1.98