DOI QR코드

DOI QR Code

Conjugation of Ginsenoside Rg3 with Gold Nanoparticles

  • Park, You-Mie (College of Pharmacy, Inje University) ;
  • Im, A-Rang (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Joo, Eun-Ji (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Lee, Ji-Hye (Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University) ;
  • Park, Hyeung-Geun (Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University) ;
  • Kang, Young-Hwa (Division of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University) ;
  • Linhardt, Robert J. (Department of Chemistry and Chemical Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute) ;
  • Kim, Yeong-Shik (Natural Products Research Institute, College of Pharmacy, Seoul National University)
  • Received : 2010.07.05
  • Accepted : 2010.10.17
  • Published : 2011.01.20

Abstract

Ginsenoside Rg3 was reported to have important biological activities. We demonstrate conjugation and quantification procedures of ginsenoside Rg3 to gold nanoparticles for future biological and medical applications. Ginsenoside Rg3 was conjugated to spherical gold nanoparticles using a bifunctional heptaethylene glycol linker. The sulfhydryl group of heptaethylene glycol was adsorbed onto gold nanoparticles, and carboxylic acid end of heptaethylene glycol was bonded through a hydroxyl group of Rg3 via ester bond formation. The conjugation of Rg3 was characterized with various spectroscopic techniques, high resolution-transmission electron microscopy, and using Rg3 monoclonal antibody. The Rg3- functionalized gold nanoparticles were $4.7{\pm}1.0$ nm in diameter with a surface charge of -4.12 mV. The total number of Rg3 molecules conjugated to a 3.6 mL solution of gold nanoparticle was determined to be $9.5{\times}10^{14}$ corresponding to ~6 molecules of Rg3/gold nanoparticle. These results suggest that ginsenoside Rg3 is successfully conjugated to gold nanoparticles via heptaethylene glycol linker. The quantification was performed by using Rg3 monoclonal antibody without interference of gold's intrinsic color.

Keywords

References

  1. Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293. https://doi.org/10.1021/cr030698+
  2. Sperling, R. A.; Gil, P. R.; Zhang, F.; Zanella, M.; Parak, W. J. Chem. Soc. Rev. 2008, 37, 1896. https://doi.org/10.1039/b712170a
  3. Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Nanotoday 2007, 2, 18.
  4. Gibson, J. D.; Khanal, B. P.; Zubarev, E. R. J. Am. Chem. Soc. 2007, 129, 11653. https://doi.org/10.1021/ja075181k
  5. Bergen, J. M.; von Recum, H. A.; Goodman, T. T.; Massey, A. P.; Pun, S. H.; Macromol. Biosci. 2006, 6, 506. https://doi.org/10.1002/mabi.200600075
  6. Zhang, G.; Yang, Z.; Lu, W.; Zhang, R.; Huang, Q.; Tian, M.; Li, L.; Liang, D.; Li, C. Biomaterials 2009, 30, 1928. https://doi.org/10.1016/j.biomaterials.2008.12.038
  7. Gu, Y. J.; Che, J.; Lin, C. C.; Lam, Y. W.; Cheng, S. H.; Wong, W. T. Toxicol. Appl. Pharm. 2009, 237, 196. https://doi.org/10.1016/j.taap.2009.03.009
  8. Kuma, S. A.; Peter, Y. A.; Nadeau, J. L. Nanotechnology 2008, 19, 1.
  9. Chen, Y. H.; Tsai, C. Y.; Huang, P. Y.; Chang, M. Y.; Cheng, P. C.; Chou, C. H.; Chen, D. H.; Wang, C. R.; Shiau, A. L.; Wu, C. L. Mol. Pharm. 2007, 4, 713. https://doi.org/10.1021/mp060132k
  10. Hosta, L.; Pla-Roca, M.; Arbiol, J.; Lopez-Iglesias, C.; Samitier, J.; Cruz, L. J.; Kogan, M. J.; Albericio, F. Bioconjugate Chem. 2009, 20, 138. https://doi.org/10.1021/bc800362j
  11. Xu, T.; Cui, M.; Xin, Y.; Gu, L.; Jiang, X.; Su, M.; Wang, D.; Wang, W. Chinese Med. J.-Peking 2008, 121, 1394.
  12. Luo, X.; Wang, C. Z.; Chen, J.; Song, W. X.; Luo, J.; Tang, N.; He, B. C.; Kang, Q.; Wang, Y.; Du, W.; He, T. C.; Yuan, C. S. Int. J. Oncol. 2008, 32, 975.
  13. Zhang, Q.; Kang, X.; Yang, B.; Wang, J.; Yang, F. Cancer Biother. Radio. 2008, 23, 647. https://doi.org/10.1089/cbr.2008.0532
  14. Xu, T.; Ying, X.; Cui, M.; Jiang, X.; Gu, L. Chinese Med. J.-Peking 2007, 120, 584.
  15. Zhang, Q. H.; Wu, C. F.; Duan, L.; Yang, J. Y. Arch. Toxicol. 2008, 82,117. https://doi.org/10.1007/s00204-007-0224-3
  16. Min, J. K.; Kim, J. H.; Cho, Y. L.; Maeng, Y. S.; Lee, S. J.; Pyun, B. J.; Kim, Y. M.; Park, J. H.; Kwon, Y. G. Biochem. Biophys. Res. Commun. 2006, 349, 987. https://doi.org/10.1016/j.bbrc.2006.08.129
  17. Song, X.; Zang, L.; Hu, S. Vaccine 2009, 27, 2306. https://doi.org/10.1016/j.vaccine.2009.02.040
  18. Joo, E. J.; Ha, Y. W.; Shin, H.; Son, S. H.; Kim, Y. S. Biol. Pharm. Bull. 2009, 32, 548. https://doi.org/10.1248/bpb.32.548
  19. Ha, Y. W.; Lim, S. S.; Ha, I. J.; Na, Y. C.; Seo, J. J.; Shin, H.; Son, S. H.; Kim, Y. S. J. Chromatogr. A 2007, 1151, 37. https://doi.org/10.1016/j.chroma.2007.01.038

Cited by

  1. Preparation of Gold Nanoparticle- Poly(L-menthyl methacrylate) Conjugates via ATRP Polymerization vol.212, pp.23, 2011, https://doi.org/10.1002/macp.201100449
  2. Contrasting Effect of Gold Nanoparticles and Nanorods with Different Surface Modifications on the Structure and Activity of Bovine Serum Albumin vol.27, pp.12, 2011, https://doi.org/10.1021/la200787t
  3. Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview vol.32, pp.2, 2015, https://doi.org/10.1039/C4NP00080C
  4. Recent advances in systemic and local delivery of ginsenosides using nanoparticles and nanofibers vol.30, pp.None, 2021, https://doi.org/10.1016/j.cjche.2020.11.012