References
- Vericat, C.; Vela, M. E.; Benitez, G. A.; Martin Gago, J. A.; Torrellels, X.; Salvarezza, R. C. J. Phys: Condens. Matter. 2006, 18, R867. https://doi.org/10.1088/0953-8984/18/48/R01
- Allara, D. L. Biosens. Bioelectron. 1995, 10, 771. https://doi.org/10.1016/0956-5663(95)99215-7
- Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Science 1999, 286, 1550. https://doi.org/10.1126/science.286.5444.1550
- Hatzor, A.; Weiss, P. S. Science 2001, 291, 1019.
- Smith, R. K.; Lewis, P. A.; Weiss, P. S. Prog. Surf. Sci. 2004, 75, 1. https://doi.org/10.1016/j.progsurf.2003.12.001
- Kumar, A.; Biebuyck, H. A.; Whitesides, G. M. Langmuir 1994, 10, 1498. https://doi.org/10.1021/la00017a030
- Mallouk, T. E.; Harrison, D. J. Interfacial Design and Chemical Sensing; American Chemical Society: Washington, DC, 1994.
- Haussling, L.; Knoll, W.; Ringsdorf, H.; Schmitt, F. J.; Yang, J. L. Makromol. Chem., Macromol. Symp. 1991, 46, 145. https://doi.org/10.1002/masy.19910460118
- Allara, D. L.; Dunbar, T. D.; Weiss, P. S.; Bumm, L. A.; Cygan, M. T.; Tour, J. M.; Reinerth, W. A.; Yao, Y.; Kozaki, M.; Jones, L., II. Ann. N. Y. Acad. Sci. 1998, 852, 349. https://doi.org/10.1111/j.1749-6632.1998.tb09884.x
- Zamborini, F. P.; Crook, R. M. Langmuir 1998, 14, 3279. https://doi.org/10.1021/la971121o
- Haussling, L.; Ringsdorf, H.; Schmitt, F. J.; Knoll, W. Langmuir 1991, 7, 1837. https://doi.org/10.1021/la00057a001
- Houseman, B. T.; Huh, J. H.; Kron, S. J.; Mrksich, M. Nat. Biotechnol. 2002, 20, 270. https://doi.org/10.1038/nbt0302-270
- Jonkheijm, P.; Weinrich, D.; Schroder, H.; Niemeyer, C. M.; Waldmann, H. Angew. Chem., Int. Ed. 2008, 47, 9618. https://doi.org/10.1002/anie.200801711
- Van Hal, P. A.; Smits, E. C. P.; Geuns, T. C. T.; Akkerman, H. B.; De Brito, B. C.; Perissinotto, S.; Lanzani, G.; Kronemeijer, A. J.; Geskin, V.; Cornil, J. et al. Nat. Nanotechnol. 2008, 3, 749. https://doi.org/10.1038/nnano.2008.305
- Madueno, R.; Raisanen, M. T.; Silien, C.; Buck, M. Nature 2008, 454, 618. https://doi.org/10.1038/nature07096
- Camillone, N.; C. E. Chidsey, D.; Liu, G.; Scoles, G. J. Chem. Phys. 1993, 98, 3503. https://doi.org/10.1063/1.464071
- Poirier, G. E.; Tarlov, M. J. Langmuir 1994, 10, 2853. https://doi.org/10.1021/la00021a001
- Delamarche, E.; Michel, B.; Gerber, C.; Anselmetti, D.; Guntherodt, H. J.; Wolf, H.; Ringsdorf, H. Langmuir 1994, 10, 2869. https://doi.org/10.1021/la00021a006
- Zhang, L.; Goddard, W. A., III; Jiang, S. J. Chem. Phys. 2002, 117, 7342. https://doi.org/10.1063/1.1507777
- Lussem, B.; Muller-Meskamp, L.; Karthauser, S.; Waser, R. Langmuir 2005, 21, 5256. https://doi.org/10.1021/la0503552
- Poirier, G. E. Langmuir 1999, 15, 1167. https://doi.org/10.1021/la981374x
- Poirier, G. E.; Pylant, E. D. Science 1996, 272, 1145. https://doi.org/10.1126/science.272.5265.1145
- Poirier, G. E. Chem. Rev. 1997, 97, 1117. https://doi.org/10.1021/cr960074m
- Fenter, P.; Eberhardt, A.; Eisenberger, P. Science 1994, 266, 1216. https://doi.org/10.1126/science.266.5188.1216
- Bucher, J. P.; Santesson, L.; Kern, K. Appl. Phys. A: Solids Surf. 1994, 59, 135. https://doi.org/10.1007/BF00332205
- Ulman, A. An Introduction to Ultrathin Organic Films; Academic Press: Boston, 1990.
- Schonenberger, C.; Jorritsma, J.; Sondag-Huethorst, J. A. M.; Fokkink, L. G. J. J. Phys. Chem. 1995, 99, 3259. https://doi.org/10.1021/j100010a042
- Bumm, L. A.; Arnold, J. J.; Dunbar, T. D.; Allara, D. L.; Weiss, P. S. J. Phys. Chem. B 1999, 103, 8122. https://doi.org/10.1021/jp9921699
- Kim, J.; Uchida, H, Honda, N, Hashizume, N.; Hashimoto, Y, Kim, H.; Nishimura, K.; Inoue, M. Jpn. J. Appl. Phys. 2003, 42, 4770. https://doi.org/10.1143/JJAP.42.4770
- Salmeron, M.; Neubauer, G.; Folch, A.; Tomitori, M.; Ogletree, D. F.; Sautet, P. Langmuir 1993, 9, 3600. https://doi.org/10.1021/la00036a041
- Kittel, C. Introduction to Solid State Physics, 5th ed.; John Wiley: New York, 1976; p 154.
- Inukai, J.; Wakisaka, M.; Itaya, K. Chem. Phys. Lett. 2004, 399, 373. https://doi.org/10.1016/j.cplett.2004.10.023
Cited by
- Effects of Solvent on the Formation of Octanethiol Self-Assembled Monolayers on Au(111) at High Temperatures in a Closed Vessel: A Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy Study vol.116, pp.42, 2012, https://doi.org/10.1021/jp307940g
- Polymorphism in Self-Assembled Terphenylthiolate Monolayers on Au(111) vol.29, pp.44, 2013, https://doi.org/10.1021/la403116r
- Phase Segregation in the Mixed Alkyl Thiol Self-assembled Monolayers on a Gold Surface at a High Incubation Temperature in a Sealed Container vol.36, pp.11, 2015, https://doi.org/10.1002/bkcs.10552
- via Ambidentate Coligands vol.32, pp.18, 2016, https://doi.org/10.1021/acs.langmuir.6b00772
- Effects of Immersion Temperature on Self-Assembled Monolayers of Octanethiol on Au(111) vol.606, pp.5, 2011, https://doi.org/10.1016/j.susc.2011.12.007
- Ultraflat Au nanoplates as a new building block for molecular electronics vol.27, pp.21, 2011, https://doi.org/10.1088/0957-4484/27/21/215601