DOI QR코드

DOI QR Code

Effects of Tunneling Current on STM Imaging Mechanism for Alkanethiol Self-assembled Monolayers on Au(111)

  • Mamun, Abdulla Hel Al (Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University) ;
  • Son, Seung-Bae (Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University) ;
  • Hahn, Jae-Ryang (Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University)
  • Received : 2010.08.04
  • Accepted : 2010.11.17
  • Published : 2011.01.20

Abstract

We investigated the effects of tunneling current on scanning tunneling microscopy (STM) images of 1-octanethiol (OT) and 1-decanethiol (DT) self-assembled monolayers (SAMs). At a low tunneling current, the domain boundaries and ordered alkanethiol molecules were clearly resolved. As the tunneling current was increased at a constant bias voltage, however, the STM images showed disordered structures of the OT and DT SAMs. As the tunneling current was reduced back to low values, the ordered structures of the alkanethiol molecules reappeared. The reversibility of the process suggests that the sulfur head groups did not rearrange under any of the tunneling current conditions. On the basis of our observations, which are inconsistent with the standard model for STM imaging of molecules on metal surfaces, we consider the STM imaging mechanism in terms of a two-region tunneling junction model.

Keywords

References

  1. Vericat, C.; Vela, M. E.; Benitez, G. A.; Martin Gago, J. A.; Torrellels, X.; Salvarezza, R. C. J. Phys: Condens. Matter. 2006, 18, R867. https://doi.org/10.1088/0953-8984/18/48/R01
  2. Allara, D. L. Biosens. Bioelectron. 1995, 10, 771. https://doi.org/10.1016/0956-5663(95)99215-7
  3. Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Science 1999, 286, 1550. https://doi.org/10.1126/science.286.5444.1550
  4. Hatzor, A.; Weiss, P. S. Science 2001, 291, 1019.
  5. Smith, R. K.; Lewis, P. A.; Weiss, P. S. Prog. Surf. Sci. 2004, 75, 1. https://doi.org/10.1016/j.progsurf.2003.12.001
  6. Kumar, A.; Biebuyck, H. A.; Whitesides, G. M. Langmuir 1994, 10, 1498. https://doi.org/10.1021/la00017a030
  7. Mallouk, T. E.; Harrison, D. J. Interfacial Design and Chemical Sensing; American Chemical Society: Washington, DC, 1994.
  8. Haussling, L.; Knoll, W.; Ringsdorf, H.; Schmitt, F. J.; Yang, J. L. Makromol. Chem., Macromol. Symp. 1991, 46, 145. https://doi.org/10.1002/masy.19910460118
  9. Allara, D. L.; Dunbar, T. D.; Weiss, P. S.; Bumm, L. A.; Cygan, M. T.; Tour, J. M.; Reinerth, W. A.; Yao, Y.; Kozaki, M.; Jones, L., II. Ann. N. Y. Acad. Sci. 1998, 852, 349. https://doi.org/10.1111/j.1749-6632.1998.tb09884.x
  10. Zamborini, F. P.; Crook, R. M. Langmuir 1998, 14, 3279. https://doi.org/10.1021/la971121o
  11. Haussling, L.; Ringsdorf, H.; Schmitt, F. J.; Knoll, W. Langmuir 1991, 7, 1837. https://doi.org/10.1021/la00057a001
  12. Houseman, B. T.; Huh, J. H.; Kron, S. J.; Mrksich, M. Nat. Biotechnol. 2002, 20, 270. https://doi.org/10.1038/nbt0302-270
  13. Jonkheijm, P.; Weinrich, D.; Schroder, H.; Niemeyer, C. M.; Waldmann, H. Angew. Chem., Int. Ed. 2008, 47, 9618. https://doi.org/10.1002/anie.200801711
  14. Van Hal, P. A.; Smits, E. C. P.; Geuns, T. C. T.; Akkerman, H. B.; De Brito, B. C.; Perissinotto, S.; Lanzani, G.; Kronemeijer, A. J.; Geskin, V.; Cornil, J. et al. Nat. Nanotechnol. 2008, 3, 749. https://doi.org/10.1038/nnano.2008.305
  15. Madueno, R.; Raisanen, M. T.; Silien, C.; Buck, M. Nature 2008, 454, 618. https://doi.org/10.1038/nature07096
  16. Camillone, N.; C. E. Chidsey, D.; Liu, G.; Scoles, G. J. Chem. Phys. 1993, 98, 3503. https://doi.org/10.1063/1.464071
  17. Poirier, G. E.; Tarlov, M. J. Langmuir 1994, 10, 2853. https://doi.org/10.1021/la00021a001
  18. Delamarche, E.; Michel, B.; Gerber, C.; Anselmetti, D.; Guntherodt, H. J.; Wolf, H.; Ringsdorf, H. Langmuir 1994, 10, 2869. https://doi.org/10.1021/la00021a006
  19. Zhang, L.; Goddard, W. A., III; Jiang, S. J. Chem. Phys. 2002, 117, 7342. https://doi.org/10.1063/1.1507777
  20. Lussem, B.; Muller-Meskamp, L.; Karthauser, S.; Waser, R. Langmuir 2005, 21, 5256. https://doi.org/10.1021/la0503552
  21. Poirier, G. E. Langmuir 1999, 15, 1167. https://doi.org/10.1021/la981374x
  22. Poirier, G. E.; Pylant, E. D. Science 1996, 272, 1145. https://doi.org/10.1126/science.272.5265.1145
  23. Poirier, G. E. Chem. Rev. 1997, 97, 1117. https://doi.org/10.1021/cr960074m
  24. Fenter, P.; Eberhardt, A.; Eisenberger, P. Science 1994, 266, 1216. https://doi.org/10.1126/science.266.5188.1216
  25. Bucher, J. P.; Santesson, L.; Kern, K. Appl. Phys. A: Solids Surf. 1994, 59, 135. https://doi.org/10.1007/BF00332205
  26. Ulman, A. An Introduction to Ultrathin Organic Films; Academic Press: Boston, 1990.
  27. Schonenberger, C.; Jorritsma, J.; Sondag-Huethorst, J. A. M.; Fokkink, L. G. J. J. Phys. Chem. 1995, 99, 3259. https://doi.org/10.1021/j100010a042
  28. Bumm, L. A.; Arnold, J. J.; Dunbar, T. D.; Allara, D. L.; Weiss, P. S. J. Phys. Chem. B 1999, 103, 8122. https://doi.org/10.1021/jp9921699
  29. Kim, J.; Uchida, H, Honda, N, Hashizume, N.; Hashimoto, Y, Kim, H.; Nishimura, K.; Inoue, M. Jpn. J. Appl. Phys. 2003, 42, 4770. https://doi.org/10.1143/JJAP.42.4770
  30. Salmeron, M.; Neubauer, G.; Folch, A.; Tomitori, M.; Ogletree, D. F.; Sautet, P. Langmuir 1993, 9, 3600. https://doi.org/10.1021/la00036a041
  31. Kittel, C. Introduction to Solid State Physics, 5th ed.; John Wiley: New York, 1976; p 154.
  32. Inukai, J.; Wakisaka, M.; Itaya, K. Chem. Phys. Lett. 2004, 399, 373. https://doi.org/10.1016/j.cplett.2004.10.023

Cited by

  1. Effects of Solvent on the Formation of Octanethiol Self-Assembled Monolayers on Au(111) at High Temperatures in a Closed Vessel: A Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy Study vol.116, pp.42, 2012, https://doi.org/10.1021/jp307940g
  2. Polymorphism in Self-Assembled Terphenylthiolate Monolayers on Au(111) vol.29, pp.44, 2013, https://doi.org/10.1021/la403116r
  3. Phase Segregation in the Mixed Alkyl Thiol Self-assembled Monolayers on a Gold Surface at a High Incubation Temperature in a Sealed Container vol.36, pp.11, 2015, https://doi.org/10.1002/bkcs.10552
  4. via Ambidentate Coligands vol.32, pp.18, 2016, https://doi.org/10.1021/acs.langmuir.6b00772
  5. Effects of Immersion Temperature on Self-Assembled Monolayers of Octanethiol on Au(111) vol.606, pp.5, 2011, https://doi.org/10.1016/j.susc.2011.12.007
  6. Ultraflat Au nanoplates as a new building block for molecular electronics vol.27, pp.21, 2011, https://doi.org/10.1088/0957-4484/27/21/215601