DOI QR코드

DOI QR Code

Thermal Stability of Lithiated Silicon Anodes with Electrolyte

  • Park, Yoon-Soo (Department of Advanced Materials Science and Engineering, Kangwon National University) ;
  • Lee, Sung-Man (Department of Advanced Materials Science and Engineering, Kangwon National University)
  • Received : 2010.09.14
  • Accepted : 2010.11.04
  • Published : 2011.01.20

Abstract

The thermal behavior of lithiated Si anodes has been investigated using differential scanning calorimetry (DSC). In particular, the effect of Si particle size on the thermal stability of a fully lithiated Si electrode was investigated. For DSC measurements, a lithiated Si anode was heated in a hermetically sealed high-pressure pan with a polyvinylidene fluoride (PVDF) binder and a 1 M $LiPF_6$ solution in an ethylene carbonate (EC)-diethyl carbonate (DEC) mixture. The thermal evolution around $140^{\circ}C$ increases with lithiation and with decreasing particle size; this phenomenon is attributed to the thermal decomposition of the solid electrolyte interface (SEI) film. Exothermic peaks, following a broad peak at around $140^{\circ}C$, shift to a lower temperature with a decrease in particle size, indicating that the thermal stability of the lithiated Si electrode strongly depends on the Si particle size.

Keywords

References

  1. Takamura, T.; Ohara, S.; Uehera, M.; Suzuki, J.; Sekine, K. J. Power Sources 2004, 129, 96. https://doi.org/10.1016/j.jpowsour.2003.11.014
  2. Yin, J.; Wada, M.; Yamamoto, K.; Kitano, Y.; Tanase, S.; Sakai, T. J. Electrochem. Soc. 2006, 153, A472. https://doi.org/10.1149/1.2160429
  3. Gomez-Camer, J. L.; Morales, J.; Sanchez, L. Electrochem. Solid-State Lett. 2008, 11, A101. https://doi.org/10.1149/1.2902305
  4. Graetz, J.; Ahn, C. C.; Yazami, R.; Fultz, B. Electrochem. Solid-State Lett. 2003, 6, A194. https://doi.org/10.1149/1.1596917
  5. Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Nano Lett. 2009, 9, 3844. https://doi.org/10.1021/nl902058c
  6. Wang, Y.; Dahn, J. R. Electrochem. Solid-State Lett. 2006, 9, A340. https://doi.org/10.1149/1.2200137
  7. Lee, Y. M.; Lee, J. Y.; Shim, H. T.; Lee, J. K.; Park, J. K. J. Electrochem. Soc. 2007, 154, A515. https://doi.org/10.1149/1.2719644

Cited by

  1. Alloy Negative Electrodes for Li-Ion Batteries vol.114, pp.23, 2014, https://doi.org/10.1021/cr500207g
  2. /Carbon Mesoporous Microfiber Composite as a Safe and High-Performance Lithium-Ion Battery Anode vol.8, pp.3, 2014, https://doi.org/10.1021/nn500278q
  3. Thermally Induced Reactions between Lithiated Nano-Silicon Electrode and Electrolyte for Lithium-Ion Batteries vol.159, pp.5, 2012, https://doi.org/10.1149/2.095205jes
  4. Low Surface Area Si Alloy/Ionomer Composite Anodes for Lithium-Ion Batteries vol.161, pp.14, 2014, https://doi.org/10.1149/2.0041414jes
  5. Sb Anodes in Lithium-Ion Batteries vol.162, pp.9, 2015, https://doi.org/10.1149/2.0331509jes
  6. Thermal stability of Sn anode material with non-aqueous electrolytes in sodium-ion batteries vol.6, pp.41, 2018, https://doi.org/10.1039/C8TA07854H
  7. Safety Issues in Lithium Ion Batteries: Materials and Cell Design vol.7, pp.None, 2011, https://doi.org/10.3389/fenrg.2019.00065
  8. Challenges and prospects of nanosized silicon anodes in lithium-ion batteries vol.32, pp.4, 2011, https://doi.org/10.1088/1361-6528/abb850
  9. Effect of electrode crosstalk on heat release in lithium-ion batteries under thermal abuse scenarios vol.44, pp.None, 2011, https://doi.org/10.1016/j.ensm.2021.10.030
  10. Status and challenges facing representative anode materials for rechargeable lithium batteries vol.66, pp.None, 2011, https://doi.org/10.1016/j.jechem.2021.08.001