DOI QR코드

DOI QR Code

Triterpenoids and Sterones from the Stem Bark of Ailanthus altissima

  • Zhou, Xiao-Jiang (State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences) ;
  • Xu, Min (State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences) ;
  • Li, Xue-Song (State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences) ;
  • Wang, Yue-Hu (State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences) ;
  • Gao, Ye (College of Pharmacy, Hunan University of Chinese Medicine) ;
  • Cai, Rui (College of Pharmacy, Hunan University of Chinese Medicine) ;
  • Cheng, Yong-Xian (State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences)
  • Received : 2010.07.28
  • Accepted : 2010.11.02
  • Published : 2011.01.20

Abstract

One new tirucallane-type triterpenoid, alianthusaltinin A (1), one new $C_{29}$ sterone, alianthaltone A (2), and 12 known compounds have been isolated from the stem bark of Ailanthus altissima. The structures of new compounds were identified by means of spectroscopic methods. Compound 3 was isolated from natural sources for the first time, and compounds 4, 5, and 9 were isolated from this plant for the first time.

Keywords

References

  1. Yan, X. H.;Cheng, J.; Di, Y. T.; Fang, X.; Dong, J. H.; Sang, P.; Wang, Y. H.; He, H. P.; Zhang, Z. K.; Hao, X. J. J. Agric. Food Chem. 2010, 58, 1572. https://doi.org/10.1021/jf903434h
  2. Beutler, J. A.; Kang, M. I.; Robert, F.; Clement, J. A.; Pelletier, J.; Colburn, N. H.; McKee, T. C.; Goncharova, E.; McMahon, J. B.; Henrich, C. J. J. Nat. Prod. 2009, 72, 503. https://doi.org/10.1021/np800732n
  3. Lidert, Z.; Wing, K.; Polonsky, J.; Imakura, Y.; Okano, M.; Tani, S.; Lin, Y. M.; Kiyokawa, H.; Lee, K. H. J. Nat. Prod. 1987, 50, 442. https://doi.org/10.1021/np50051a016
  4. Guo, Z.; Vangapandu, S.; Sindelar, R. W.; Walker, L. A.; Sindelar, R. D. Curr. Med. Chem. 2005, 12, 173. https://doi.org/10.2174/0929867053363351
  5. Kubota, K.; Fukamiya, N.; Hamada, T.; Okano, M.; Tagahara, K.; Lee, K. H. J. Nat. Prod. 1996, 59, 683. https://doi.org/10.1021/np960427c
  6. Tamura, S.; Fukamiya, N.; Okano, M.; Koyama, J.; Koike, K. Nat. Prod. Res. 2006, 20, 1211. https://doi.org/10.1080/14786410600899183
  7. Tamura, S.; Fukamiya, N.; Okano, M.; Koyama, J.; Koike, K.; Tokuda, H.; Aoi, W.; Takayasu, J.; Kuchide, M.; Nishino, H. Chem. Pharm. Bull. 2003, 51, 385. https://doi.org/10.1248/cpb.51.385
  8. Zhang, L. P.; Wang, J. Y.; Wang, W.; Cui, Y. X.; Cheng, D. L. J. Asian Nat. Prod. Res. 2007, 9, 253. https://doi.org/10.1080/10286020600604286
  9. Souleles, C.; Kokkalou, E. Planta Med. 1989, 55, 286. https://doi.org/10.1055/s-2006-962006
  10. Crespi-Perellino, N.; Guicciardi, A.; Malyszko, G.; Arlandini, E.; Ballabio, M.; Minghetti, A. J. Nat. Prod. 1986, 49, 1010. https://doi.org/10.1021/np50048a007
  11. Hwang, S. W.; Lee, J. R.; Lee, J.; Kwon, H. S.; Yang, M. S.; Park, K. H. Heterocycles 2005, 65, 1963. https://doi.org/10.3987/COM-05-10429
  12. Feo, V. D.; Martino, L. D.; Quaranta, E.; Pizza, C. J. Agric. Food Chem. 2003, 51, 1177. https://doi.org/10.1021/jf020686+
  13. Luo, X. D.; Wu, S. H.; Ma, Y. B.; Wu, D. G. Phytochemistry 2000, 54, 801. https://doi.org/10.1016/S0031-9422(00)00172-2
  14. Nes, W. R.; Varkey, E.; Crump, D. R.; Gut, M. J. Org. Chem. 1976, 41, 3429. https://doi.org/10.1021/jo00883a023
  15. Mijares, A.; Cargill, D. I.; Glasel, J. A.; Lieberman, S. J. Org. Chem. 1967, 32, 810. https://doi.org/10.1021/jo01278a066
  16. Breen, G. J. W.; Ritchie, E.; Sidwell, W. T. L.; Taylor, W. C. Aust. J. Chem. 1966, 19, 455. https://doi.org/10.1071/CH9660455
  17. Poejlans, B. L.; Cart, B. K.; Francis, T. A.; Hylandh, L. J.; Allaudeen, S.; Troupe, N. J. Nat. Prod. 1987, 50, 706. https://doi.org/10.1021/np50052a022
  18. Seger, C.; Pointinger, S.; Greger, H.; Hofer, O. Tetrahedron Lett. 2008, 49, 4313. https://doi.org/10.1016/j.tetlet.2008.04.109
  19. Georgesa, P.; Sylvestrea, M.; Ruegger, H.; Bourgeoisa, P. Steroids 2006, 71, 647. https://doi.org/10.1016/j.steroids.2006.01.016
  20. Kobayashi, M.; Krishna, M. M.; Ishida, K.; Anjaneyulu, V. Chem. Pharm. Bull. 1992, 40, 72. https://doi.org/10.1248/cpb.40.72
  21. Brown, D.; Asplund, R. O.; McMahon, V. A. Phytochemistry 1975, 114, 1083.
  22. Sadhu, S. K.; Phattanawasin, P.; Choudhuri, M. S. K.; Ohtsuki, T. M.; Ishibashi, M. J. Nat. Med. 2006, 60, 258. https://doi.org/10.1007/s11418-006-0047-1

Cited by

  1. ChemInform Abstract: Triterpenoids and Sterones from the Stem Bark of Ailanthus altissima vol.42, pp.22, 2011, https://doi.org/10.1002/chin.201122205
  2. Triterpenoids vol.30, pp.7, 2013, https://doi.org/10.1039/C3NP70032A
  3. Phenylpropionamides, Piperidine, and Phenolic Derivatives from the Fruit of Ailanthus altissima vol.22, pp.12, 2017, https://doi.org/10.3390/molecules22122107
  4. Structure elucidation and absolute configuration determination of C26, C27 and C30 tirucallane triterpenoids from the leaves of Picrasma quassioides (D. Don) Benn vol.184, pp.None, 2021, https://doi.org/10.1016/j.phytochem.2021.112675
  5. The identification of phenylpropanoids isolated from the root bark of Ailanthus altissima (Mill.) Swingle vol.35, pp.7, 2021, https://doi.org/10.1080/14786419.2019.1643861