DOI QR코드

DOI QR Code

Phosphorescent Azacrown Ether-appended Iridium (III) Complex for the Selective Detection of Hg2+ in Aqueous Acetonitrile

  • Li, Yinan (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Yoon, Ung-Chan (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Hyun, Myung-Ho (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • Received : 2010.09.29
  • Accepted : 2010.11.02
  • Published : 2011.01.20

Abstract

A new phosphorescent cyclometalated heteroleptic iridium (III) complex with an ancillary ligand of 4-azacrownpicolinate was prepared and its metal ion selective phosphorescent chemosensing behavior was investigated. The new iridium (III) complex exhibits notable phosphorescence quenching for Hg2+ in aqueous 50% acetonitrile solution with respect to the selective phosphorescent detection of various metal ions including $Li^+,Na^+,K^+,Cs^+,Mg^{2+},Ca^{2+},Ba^{2+},Fe^{2+},Ni^{2+},Cu^{2+},Zn^{2+},Ag^+,Pb^{2+},Cd^{2+},Cr^{2+},Cr^{3+}$ and $Hg^{2+}$. The phosphorescence quenching for $Hg^{2+}$ increased linearly with increasing concentration of $Hg^{2+}$ in the range of $10{\mu}M-700{\mu}M$ even in the presence of other metal ions, except for $Cu^{2+}$. Consequently, the new iridium (III) complex has the potential to be utilized for the determination of parts per million levels of $Hg^{2+}$ in aqueous acetonitrile media.

Keywords

References

  1. Stern, A. H.; Hudson, R. J. M.; Shade, C. W.; Ekino, S.; Ninomiya, T.; Susa, M.; Harris, H. H.; Pickering, I. J.; George, G. N. Science 2004, 303, 763.
  2. Boening, D. W. Chemosphere 2000, 40, 1335. https://doi.org/10.1016/S0045-6535(99)00283-0
  3. Zheng, H.; Qian, Z.-H.; Xu, L.; Yuan, F.-F.; Lan, L.-D.; Xu, J. G. Org. Lett. 2006, 8, 859. https://doi.org/10.1021/ol0529086
  4. Wu, D.; Huang, W.; Duan, C.; Lin, Z.; Meng, Q. Inorg. Chem. 2007, 46, 1538. https://doi.org/10.1021/ic062274e
  5. Shiraishi, Y.; Sumiya, S.; Kohno, Y.; Hirai, T. J. Org. Chem. 2008, 73, 8571. https://doi.org/10.1021/jo8012447
  6. Huang, J.; Xu, Y.; Qian, X. J. Org. Chem. 2009, 74, 2167. https://doi.org/10.1021/jo802297x
  7. Kwon, S. K.; Kim, H. N.; Rho, J. H.; Swamy, K. M. K.; Shanthakumar, S. M.; Yoon, J. Bull. Korean Chem. Soc. 2009, 30, 719. https://doi.org/10.5012/bkcs.2009.30.3.719
  8. Kim, S. H.; Youn, N. J.; Park, J. Y.; Choi, M. G.; Chang S.-K. Bull. Korean Chem. Soc. 2006, 27, 1553. https://doi.org/10.5012/bkcs.2006.27.10.1553
  9. Kim, H. J.; Park, J.-E.; Noh, J. H.; Li, M; Ham, S. W.; Chang, S.-K. Bull. Korean Chem. Soc. 2008, 29, 1601. https://doi.org/10.5012/bkcs.2008.29.8.1601
  10. Nolan, E. M.; Racine, M. E.; Lippard, S. J. Inorg. Chem. 2006, 45, 2742. https://doi.org/10.1021/ic052083w
  11. Kim, H. J.; Park, J. E.; Choi, M. G.; Ahn, S.; Chang, S.-K. Dyes and Pigments. 2010, 84, 54. https://doi.org/10.1016/j.dyepig.2009.06.009
  12. Yoon, S.; Albers, A. E.; Wong, A. P.; Chang, C. J. J. Am. Chem. Soc. 2005, 127, 16030. https://doi.org/10.1021/ja0557987
  13. Kim, S. H.; Song, K. C.; Ahn, S.; Kang, Y. S.; Chang, S.-K. Tetrahedron Lett. 2006, 47, 497. https://doi.org/10.1016/j.tetlet.2005.11.060
  14. Kim, K. S.; Jun, E. J.; Kim, S. K.; Choi, H. J.; Yoo, J.; Lee, C.-H.; Hyun, M. H.; Yoon, J. Tetrahedron Lett. 2007, 48, 2481. https://doi.org/10.1016/j.tetlet.2007.02.028
  15. Kim, H. J.; Kim, S. H.; Kim, J. H.; Lee, E.-H.; Kim, K.-W.; Kim, J. S. Bull. Korean Chem. Soc. 2008, 29, 1831. https://doi.org/10.5012/bkcs.2008.29.9.1831
  16. Niamnont, N.; Siripornnoppakhun, W.; Rashatasakhon, P.; Sukwattanasinitt, M. Org. Lett. 2009, 11, 2768. https://doi.org/10.1021/ol900929g
  17. Tian, M.; Ihmels, H. Chem. Commun. 2009, 3175.
  18. Goodall, W.; Williams, J. A. G. J. Chem. Soc. Dalton Trans. 2000, 17, 2893.
  19. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.-E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304. https://doi.org/10.1021/ja003693s
  20. Takizawa, S.; Echizen, H.; Nishida, J.; Tsuzuki, T.; Tokito, S.; Yamashita, Y. Chem. Lett. 2006, 35, 748. https://doi.org/10.1246/cl.2006.748
  21. Ulbricht, C.; Beyer, B.; Friebe, C.; Winter, A.; Schubert, U. S. Adv. Mater. 2009, 21, 4418. https://doi.org/10.1002/adma.200803537
  22. Zhao, Q.; Liu, S.; Shi, M.; Li, F.; Jing, H.; Yi, T.; Huang, C. Organometallics 2007, 26, 5922. https://doi.org/10.1021/om700623j
  23. Zhao, Q.; Li, F.; Liu, S.; Yu, M.; Liu, Z.; Yi, T.; Huang, C. Inorg. Chem. 2008, 47, 9256. https://doi.org/10.1021/ic800500c
  24. You, Y.; Park, S. Y. Adv. Mater. 2008, 20, 3820. https://doi.org/10.1002/adma.200702667
  25. Chen, H.; Zhao, Q.; Wu, Y.; Li, F.; Yang, H.; Yi, T.; Huang, C. Inorg. Chem. 2007, 46, 11075. https://doi.org/10.1021/ic7010887
  26. Ho, M.-L.; Hwang, F.-M.; Chen, P.-N.; Hu, Y.-H.; Cheng, Y.-M.; Chen, K.-S.; Lee, G.-H.; Chi, Y.; Chou, P.-T. Org. Biomol. Chem. 2006, 4, 98. https://doi.org/10.1039/b511943j
  27. Schmittel, M.; Lin, H. Inorg. Chem. 2007, 46, 9139. https://doi.org/10.1021/ic700413v
  28. Ho, M.-L.; Cheng, Y.-M.; Wu, L.-C.; Chou, P.-T.; Lee, G.-H.; Hsu, F.-C.; Chi, Y. Polyhedron 2007, 26, 4886. https://doi.org/10.1016/j.poly.2007.06.029
  29. Sie, W.-S.; Lee, G.-H.; Tsai, K. Y.-D.; Chang, I-J.; Shiu, K.-B. J. Mol. Struct. 2008, 890, 198. https://doi.org/10.1016/j.molstruc.2008.04.023
  30. Zhao, Q.; Cao, T.; Li, F.; Li, X.; Jing, H.; Yi, T.; Huang C. Organometallics 2007, 26, 2077. https://doi.org/10.1021/om061031r
  31. Zhao, Q.; Liu, S.; Li, F.; Yi, T.; Huang, C. J. Chem. Soc. Dalton Trans. 2008, 29, 3836.
  32. Tsukanov, A. V.; Dubonosov, A. D.; Bren, V. A.; Minkin, V. I. Chem. Heterocycl. Compd. 2008, 44, 899. https://doi.org/10.1007/s10593-008-0132-3
  33. Sprous, S.; King, K. A.; Spellane, P. J.; Watts, R. J. J. Am. Chem. Soc. 1984, 106, 6647. https://doi.org/10.1021/ja00334a031
  34. Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703. https://doi.org/10.1021/ja01176a030
  35. Rose, N. J.; Drago, R. S. J. Am. Chem. Soc. 1959, 81, 6138. https://doi.org/10.1021/ja01532a009
  36. McDonald, A. R.; Mores, D.; Donega, C. D. M.; van Walree, C. A.; Gebbink, R. J. M. K.; Lutz, M.; Spek, A. L.; Meijerink, A.; van Klink, G. P. M.; van Koten, G. V. Organometallics 2009, 28, 1082. https://doi.org/10.1021/om800226q

Cited by

  1. A highly selective and naked-eye sensor for Hg2+ based on quinazoline-4(3H)-thione vol.36, pp.9, 2012, https://doi.org/10.1039/c2nj40400a
  2. BINOL Macrocycle Derivatives: Synthesis of New Dinaphthyl Sulfide Aza Oxa Thia Crowns (Lariats) vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/598937
  3. Based on a Cyclometalated Ir(III) Complex and Its Application in Time-Resolved Luminescence Assays and Live Cell Imaging vol.53, pp.21, 2014, https://doi.org/10.1021/ic501417s
  4. Applicable in Time-Resolved Luminescence Assay and Live Cell Imaging vol.87, pp.6, 2015, https://doi.org/10.1021/ac503878s
  5. Phosphorescent Dimesitylboryl-Appended Iridium(III) Complex for Fluoride Anion Sensing vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.4125
  6. 3,9-Dithia-6-azaundecane-appended Iridium (III) Complex for the Selective Detection of Hg2+ in Aqueous Acetonitrile vol.33, pp.10, 2011, https://doi.org/10.5012/bkcs.2012.33.10.3465
  7. Phosphorescent Chemosensor Based on Iridium(III) Complex for the Selective Detection of Cu(II) Ion in Aqueous Acetonitrile vol.34, pp.2, 2013, https://doi.org/10.5012/bkcs.2013.34.2.653
  8. Supramolecular Luminescent Sensors vol.119, pp.1, 2011, https://doi.org/10.1021/acs.chemrev.8b00260