Study on the Cycling Performance of Li4Ti5O12 Electrode in the Ionic Liquid Electrolytes Containing an Additive

  • Kim, Jin-Hee (Department of Chemical Engineering, Hanyang University) ;
  • Song, Seung-Wan (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Hoang, Hung-Van (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Doh, Chil-Hoon (Korea Electrotechnology Research Institute) ;
  • Kim, Dong-Won (Department of Chemical Engineering, Hanyang University)
  • Received : 2010.09.30
  • Accepted : 2010.10.25
  • Published : 2011.01.20


The cycling behavior of $Li_4Ti_5O_{12}$ electrode in the ionic liquid (IL)-based electrolytes containing 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide and a small amount of additive (vinylene carbonate, ethylene carbonate, fluoroethylene carbonate) was investigated. The $Li_4Ti_5O_{12}$ electrode in the IL electrolyte with an additive exhibited reversible cycling behavior with good capacity retention. Electrochemical impedance spectroscopy and FTIR studies revealed that an electrochemically stable solid electrolyte interphase was formed on the $Li_4Ti_5O_{12}$ electrode in the presence of vinylene carbonate and ethylene carbonate during cycling.


  1. Galinski, M.; Lewandowski, A.; Stepniak, I. Electrochim. Acta 2006, 51, 5567.
  2. Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Nature Mater. 2009, 9, 621.
  3. Lewandowski, A.; Swiderska-Mocek, A. J. Power Sources 2009, 194, 601.
  4. Holzapfel, M.; Jost, C.; Novak, P. Chem. Commun. 2004, 2098.
  5. Egashira, M.; Okada, S.; Yamaki, J.-I.; Dri, D. A.; Bonadies, F.; Scrosati, B. J. Power Sources 2004, 138, 240.
  6. Garcia, B.; Lavallee, S.; Perron, G.; Michot, C.; Armand, M. Electrochim. Acta 2004, 49, 4583.
  7. Chagnes, A.; Diaw, M.; Carre, B.; Willmann, P.; Lemordant, D. J. Power Sources 2005, 145, 82.
  8. Holzapfel, M.; Jost, C.; Prodi-Schwab, A.; Krumeich, F.; Wursig, A.; Buqa, H.; Novak, P. Carbon 2005, 43, 1488.
  9. Zheng, H.; Jiang, K.; Abe, T.; Ogumi, Z. Carbon 2006, 44, 203.
  10. Ishikawa, M.; Sugimoto, T.; Kikuta, M.; Ishiko, E.; Kono, M. J. Power Sources 2006, 162, 658.
  11. Lewandowski, A.; Swiderska-Mocek, A. J. Power Sources 2007, 171, 938.
  12. Zhao, L.; Yamaki, J.-I.; Egashira, M. J. Power Sources 2007, 174, 352.
  13. Reale, P.; Fernicola, A.; Scrosati, B. J. Power Sources 2009, 194, 182.
  14. Eo, S. M.; Cha, E.; Kim, D. W. J. Power Sources 2009, 189, 766.
  15. Jung, H. G.; Yoon, C. S.; Prakash, J.; Sun, Y. K. J. Phys. Chem. C 2009, 113, 21258.
  16. Song, S. W.; Zhuang, G. V.; Ross, P. N. J. Electrochem. Soc. 2004, 151, A1162.
  17. Socrates, G. Infrared Characteristic Group Frequencies, Tables and Charts, 2nd ed.; John Wiley & Sons: New York, USA, 1994.

Cited by

  1. Microsphere and Interfacial Control for Enhanced Lithium Storage Performance vol.3, pp.9, 2011,
  2. Solid electrolyte interphase formation on metallic lithium vol.16, pp.10, 2012,
  3. Electrodes in Ionic Liquid-Based Gel Polymer Electrolytes vol.33, pp.2, 2012,
  4. A systematic approach to the impedance of surface layers with mixed conductivity forming on electrodes vol.17, pp.12, 2013,
  5. Lithium polymer batteries assembled with in situ cross-linked gel polymer electrolytes containing ionic liquid vol.21, pp.1, 2013,
  6. pp.1520-5827, 2017,