DOI QR코드

DOI QR Code

Photocatalytic Hydrogen Production in Water-Methanol Mixture over Iron-doped CaTiO3

  • Jang, J. S. (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Borse, P. H. (Centre for Nanomaterials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARC International)) ;
  • Lee, J. S. (Department of Imaging System Engineering, Pukyong National University) ;
  • Lim, K. T. (Department of Chemistry, Pusan National University) ;
  • Jung, O. S. (Busan High Tech Center, Korea Basic Science Institute) ;
  • Jeong, E. D. (Busan High Tech Center, Korea Basic Science Institute) ;
  • Bae, J. S. (Busan High Tech Center, Korea Basic Science Institute) ;
  • Kim, H. G. (Busan High Tech Center, Korea Basic Science Institute)
  • Received : 2010.06.30
  • Accepted : 2010.10.22
  • Published : 2011.01.20

Abstract

$CaTi_{1-x}Fe_xO_3(0{\leq}x{\leq}0.4)$ solid solution photocatalysts were synthesized by iron doping during the conventional solid state reaction at $1100^{\circ}C$ for 5 h and characterized by ultraviolet-visible (UV-vis) absorption spectroscopy, X-ray diffraction, morphological analysis. We found that $CaTi_{1-x}Fe_xO_3$ samples not only absorb UV but also the visible light photons. This is because the Fe substitution at Ti-site in $CaTi_{1-x}Fe_xO_3$ lattice induces the band transition from Fe3d to the Fe3d + Ti3d hybrid orbital. The photocatalytic activity of Fe doped $CaTiO_3$ samples for hydrogen production under UV light irradiation decreased with the increase in the Fe concentration. There exists an optimized concentration of iron in $CaTiO_3$, which yields a maximum photocatalytic activity under visible light ($\lambda\geq420nm$) photons.

Keywords

References

  1. Yin, J.; Zou, Z.; Ye, J. J. Phys. Chem. B 2003, 107, 61. https://doi.org/10.1021/jp026403y
  2. Hideki, H.; Kiyotaka, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125, 3082. https://doi.org/10.1021/ja027751g
  3. Domen, K.; Kudo, A.; Onishi, T.; Kosugi, N.; Kuroda, H. J. Phys. Chem. 1983, 90, 292. https://doi.org/10.1021/j100274a018
  4. Mizoguchi, H.; Ueda, K.; Orita, M.; Moon, S. C.; Kajihara, K.; Hirano, M.; Hosono, H. Mater. Res. Bull. 2002, 37, 2401. https://doi.org/10.1016/S0025-5408(02)00974-1
  5. Kudo, A. Catal. Survey from Asia 2003, 7, 31. https://doi.org/10.1023/A:1023480507710
  6. Domen, K.; Hara, M.; Kondo, J. N.; Takata, T.; Kudo, A.; Kobayashi, H.; Inoue, Y. Korean J. Chem. Eng. 2001, 18, 862. https://doi.org/10.1007/BF02705609
  7. Kim, H. G.; Borse, P. H.; Choi, W.; Lee, J. S. Angew. Chem. Int. Ed. 2005, 44, 4585. https://doi.org/10.1002/anie.200500064
  8. Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125, 3082. https://doi.org/10.1021/ja027751g
  9. Kim, H. G.; Hwang, D. W.; Lee, J. S. J. Am. Chem. Soc. 2004, 126, 8912. https://doi.org/10.1021/ja049676a
  10. Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Nature 2002, 424, 625. https://doi.org/10.1038/424625a
  11. Hwang, D. W.; Kim, H. G.; Lee, J. S.; Kim, J.; Li, W.; Oh, S. H. J. Phys. Chem. B 2005, 109, 2093. https://doi.org/10.1021/jp0493226
  12. Bae, S. W.; Borse, P. H.; Hong, S. J.; Jang, J. S.; Lee, J. S.; Jeong, E. D.; Hong, T. E.; Yoon, J. H.; Jin, J. S.; Kim, H. G. J. Korean Phys. Soc. 2007, 51, S22. https://doi.org/10.3938/jkps.51.22
  13. Bae, S. W.; Borse, P. H.; Lee, J. S. Appl. Phys. Lett. 2008, 92, 104107/1.
  14. Khan, S. U. M.; Al-Shahry, M.; Ingler. Jr., W. B. Science 2002, 297, 2243. https://doi.org/10.1126/science.1075035
  15. Mitoraj, D.; Kisch, H. Angew. Chem. Int. Ed. 2008, 47, 9975. https://doi.org/10.1002/anie.200800304
  16. Ji, S. M.; Borse, P. H.; Kim, H. G.; Hwang, D. W.; Jang, J. S.; Bae, S. W.; Lee, J. S. Phys. Chem. Chem. Phys. 2005, 7, 1315. https://doi.org/10.1039/b417052k
  17. Jang, J. S.; Kim, H. G.; Ji, S. M.; Bae, S. W.; Jung, J. H.; Shon, B. H.; Lee, J. S. J. Solid State Chem. 2006, 179, 1064
  18. Reber, J-F.; Rusek, M. J. Phys. Chem. 1986, 90, 824. https://doi.org/10.1021/j100277a024

Cited by

  1. Practical microwave-induced hydrothermal synthesis of rectangular prism-like CaTiO3 vol.15, pp.13, 2013, https://doi.org/10.1039/c3ce27040h
  2. in Photocatalytic Methanol Oxidation and Dehydrogenation Reactions vol.2014, pp.1687-529X, 2014, https://doi.org/10.1155/2014/503516
  3. Photocatalytic activity of MTiO3 (M = Ca, Ni, and Zn) nanocrystals for water decomposition to hydrogen vol.29, pp.11, 2014, https://doi.org/10.1557/jmr.2014.110
  4. A polyacrylamide gel route to different-sized CaTiO3 nanoparticles and their photocatalytic activity for dye degradation vol.71, pp.2, 2014, https://doi.org/10.1007/s10971-014-3366-9
  5. Double Layer for Electron Transport in Perovskite Solar Cells vol.120, pp.26, 2016, https://doi.org/10.1021/acs.jpcc.6b04642
  6. and in Situ Mechanistic Studies vol.120, pp.36, 2016, https://doi.org/10.1021/acs.jpcc.6b05407
  7. An efficient CaTiO3 nano sonocatalyst toward the dye degradation under ultrasonic irradiation vol.124, pp.10, 2016, https://doi.org/10.2109/jcersj2.16142
  8. H2 Production Under Visible Light Irradiation from Aqueous Methanol Solution on CaTiO3:Cu Prepared by Spray Pyrolysis vol.46, pp.10, 2017, https://doi.org/10.1007/s11664-017-5551-4
  9. Photocatalytic activity of CaTiO3 synthesized by solid state, sol–gel and hydrothermal methods vol.81, pp.3, 2017, https://doi.org/10.1007/s10971-016-4261-3
  10. Fabrication of photoactive CaTiO3–TiO2 composite thin film electrodes via facile single step aerosol assisted chemical vapor deposition route pp.1573-482X, 2019, https://doi.org/10.1007/s10854-018-0411-4
  11. nanotubes with simple hydrothermal method and its photoelectrochemical property vol.29, pp.38, 2018, https://doi.org/10.1088/1361-6528/aacfde
  12. adsorption and photocatalytic reduction vol.9, pp.2, 2019, https://doi.org/10.1039/C8CY02142B
  13. Band-engineered CaTiO3 nanowires for visible light photocatalysis vol.113, pp.10, 2011, https://doi.org/10.1063/1.4794196
  14. Perovskite-type SrTiO3, CaTiO3 and BaTiO3 porous film electrodes for dye-sensitized solar cells vol.122, pp.1428, 2011, https://doi.org/10.2109/jcersj2.122.728
  15. Enhanced photocatalytic activity of CaTiO3-graphene nanocomposites for dye degradation vol.89, pp.11, 2011, https://doi.org/10.1088/0031-8949/89/11/115801
  16. Double-layer dye-sensitized solar cells using SrTiO3 and BaTiO3 second layer with enhanced photovoltaic performance vol.123, pp.1442, 2011, https://doi.org/10.2109/jcersj2.123.967
  17. 메탄올 광분해 수소제조를 위한 ATiO3 (A = Ca, Sr, Ba) Perovskite 광촉매의 Ni 첨가 영향 vol.23, pp.1, 2011, https://doi.org/10.7464/ksct.2017.23.1.095
  18. Hierarchical CaTiO3 nanowire-network architectures for H2 evolution under visible-light irradiation vol.806, pp.None, 2011, https://doi.org/10.1016/j.jallcom.2019.07.294
  19. In situ surface modification of TiO2 by CaTiO3 to improve the UV stability and power conversion efficiency of perovskite solar cells vol.115, pp.21, 2011, https://doi.org/10.1063/1.5131300
  20. Enhanced piezocatalytic, photocatalytic and piezo-/photocatalytic performance of diphasic Ba1−xCaxTiO3 nanowires near a solubility limit vol.9, pp.24, 2011, https://doi.org/10.1039/c9cy01713e
  21. Investigation on temperature-dependent structural, dielectric and impedance characteristics of Cu-doped CaFexTi1-xO3-δ nanotitanates vol.32, pp.17, 2011, https://doi.org/10.1007/s10854-021-06677-w