참고문헌
- Ametamey, S. M.; Honer, M.; Schubiger, P. A. Chem. Rev. 2008, 108, 1501-1516. https://doi.org/10.1021/cr0782426
- Willmann, J. K.; van Bruggen, N.; Dinkelborg, L. M.; Gambhir, S. S. Nat. Rev. Drug Discovery 2008, 591-607.
- Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D. Angew. Chem. Int. Ed. 2008, 47, 8998-9033. https://doi.org/10.1002/anie.200800222
- Phelps, M. E. Proc. Natl. Acad. Sci. USA 2000, 97, 9226-9233. https://doi.org/10.1073/pnas.97.16.9226
- Levin, C. S. Eur. J. Med. Mol. Imaging 2005, 32, S325-S345. https://doi.org/10.1007/s00259-005-1973-y
- Kilbourn, M. R.; Hood, J. T.; Welch, M. J. Appl. Radiat. Isot. 1984, 35, 599-602. https://doi.org/10.1016/0020-708X(84)90102-9
- Bergman, J.; Solin, O. Nucl. Med. Biol. 1997, 24, 677-683. https://doi.org/10.1016/S0969-8051(97)00078-4
- Nishijima, K.-I.; Kuge, Y.; Tsukamoto, E.; Seki, K.-I.; Ohkura, K.; Magata, Y.; Tanaka, A.; Nagatsu, K.; Tamaki, N. Appl. Radiat. Isot. 2002, 57, 43-49. https://doi.org/10.1016/S0969-8043(02)00070-2
- Tilyou, S. M. J. Nucl. Med. 1991, 32, 15N-26N.
- Toorongian, S. A.; Mulholland, G. K.; Jewett, D. M.; Bachelor, M. A.; Kilbourn, M. R. Nucl. Med. Biol. 1990, 17, 273-279.
- Jewett, D. M.; Toorongian, S. A.; Mulholland, G. K.; Watkins, G. L.; Kilbourn, M. R. Appl. Radiat. Isot. 1988, 39, 1109-1111. https://doi.org/10.1016/0883-2889(88)90001-9
- Ohsaki, K.; Endo, Y.; Yamazaki, S.; Tomoi, M.; Iwata, R. Appl. Radiat. Isot. 1998, 49, 373-378. https://doi.org/10.1016/S0969-8043(97)00289-3
- Okarvi, S. M. Eur. J. Nucl. Med. 2001, 28, 929-938. https://doi.org/10.1007/s002590100508
- Suehiro, M.; Vallabhajosula, S.; Goldsmith, S. J.; Ballon, D. J. Appl. Radiat. Isot. 2007, 65, 1350-1358. https://doi.org/10.1016/j.apradiso.2007.07.013
- Coenen, H. H.; Klatte, B.; Knochel, A.; Schuller, M.; Stocklin, G. J. Labelled Compd. Radiopharm. 1986, 23, 455-466. https://doi.org/10.1002/jlcr.2580230502
- Hamacher, K.; Coenen, H. H.; Stocklin, G. J. Nucl. Med. 1986, 27, 235-238.
- Aerts, J.; Voccia, S.; Lemaire, C.; Giacomelli, F.; Goblet, D.; Thonon, D.; Plenevaux, A.; Warnock, G.; Luxen, A. Tetrahedron Lett. 2010, 51, 64-66. https://doi.org/10.1016/j.tetlet.2009.10.085
- Lee, B. S.; Seo, J. W.; Lee, S. J.; Oh, S. J.; Chi, D. Y. J. Labelled Compd. Radiopharm. 2007, 50 (S1), S165. https://doi.org/10.1002/jlcr.1216
- Lemaire, C. F.; Aerts, J. J.; Voccia, S.; Libert, L. C.; Mercier, F.; Goblet, D.; Plenevaux, A. R.; Luxen, A. J. Angew. Chem. Int. Ed. 2010, 49, 3161-3164. https://doi.org/10.1002/anie.200906341
- Moon, B. S.; Park, J. H.; Lee, H. J.; Kim, J. S.; Kil, H. S.; Lee, B. S.; Chi, D. Y.; Lee, B. C.; Kim, Y. K.; Kim, S. E. Appl. Radiat. Isot. 2010, 68, 2279-2284. https://doi.org/10.1016/j.apradiso.2010.06.016
- Kim, D. W.; Song, C. E.; Chi, D. Y. J. Am. Chem. Soc. 2002, 124, 10278-10279. https://doi.org/10.1021/ja026242b
- Jorapur, Y. R.; Chi, D. Y. Bull. Korean Chem. Soc. 2006, 27, 345-354. https://doi.org/10.5012/bkcs.2006.27.3.345
- Kim, D. W.; Ahn, D.-S.; Oh, Y.-H.; Lee, S.; Kil, H. S.; Oh, S. J.; Lee, S. J.; Kim, J. S.; Ryu, J. S.; Moon, D. H.; Chi, D. Y. J. Am. Chem. Soc. 2006, 128, 16394-16397. https://doi.org/10.1021/ja0646895
- Lee, S. J.; Oh, S. J.; Chi, D. Y.; Kang, S. H.; Kil, H. S.; Kim, J. S.; Moon, D. H. Nucl. Med. Biol. 2007, 34, 345-351. https://doi.org/10.1016/j.nucmedbio.2007.02.007
- Kim, D. W.; Jeong, H.-J.; Lim, S. T.; Sohn, M.-H. Angew. Chem. Int. Ed. 2008, 47, 8404-8406. https://doi.org/10.1002/anie.200803150
- Lee, C.-C.; Sui, G.; Elizarov, A.; Shu, C. J.; Shin, Y.-S.; Dooley, A. N.; Juang, J.; Daridon, A.; Wyatt, P.; Stout, D.; Kolb, H. C.; Witte, O. N.; Satyamurthy, N.; Heath, J. R.; Phelps, M. E.; Quake, S. R.; Tseng, H.-R. Science 2005, 310, 1793-1796. https://doi.org/10.1126/science.1118919
- Gillies, J. M.; Prenant, C.; Chimon, G. N.; Smethurst, G. J.; Perrie, W.; Hamblett, I.; Dekker, B. A.; Zweit, J. Appl. Radiat. Isot. 2006, 64, 325-332. https://doi.org/10.1016/j.apradiso.2005.08.007
피인용 문헌
- Degradation of acetonitrile in eluent solutions for [18F]fluoride PET chemistry: impact on radiosynthesis of [18F]FACBC and [18F]FDG vol.55, pp.3, 2012, https://doi.org/10.1002/jlcr.1956
- Microfluidics: A Groundbreaking Technology for PET Tracer Production? vol.18, pp.7, 2013, https://doi.org/10.3390/molecules18077930
- module vol.56, pp.12, 2013, https://doi.org/10.1002/jlcr.3067
- F]FMISO) vol.56, pp.14, 2013, https://doi.org/10.1002/jlcr.3115
- F]Fluoride vol.4, pp.1, 2015, https://doi.org/10.1002/open.201402081
- Titania-Catalyzed Radiofluorination of Tosylated Precursors in Highly Aqueous Medium vol.137, pp.17, 2015, https://doi.org/10.1021/jacs.5b02659
- Applications of Fluorine in Medicinal Chemistry vol.58, pp.21, 2015, https://doi.org/10.1021/acs.jmedchem.5b00258
- F-labeling of internalizing biomolecules vol.14, pp.4, 2016, https://doi.org/10.1039/C5OB02258D
- adsorption vol.18, pp.21, 2016, https://doi.org/10.1039/C6GC01416J
- F]FDG synthesis and its application to a lab-on-chip platform vol.52, pp.4, 2016, https://doi.org/10.1039/C5CC07106B
- DMAP-BODIPY Alkynes: A Convenient Tool for Labeling Biomolecules for Bimodal PET-Optical Imaging vol.20, pp.40, 2014, https://doi.org/10.1002/chem.201402379
- 18F-labelling innovations and their potential for clinical application vol.6, pp.3, 2018, https://doi.org/10.1007/s40336-018-0280-0
- High Yielding [18F]Fluorination Method by Fine Control of the Base vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2177
- Development of Customized [ 18 F]Fluoride Elution Techniques for the Enhancement of Copper-Mediated Late-Stage Radiofluorination vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-00110-1
- A concisely automated synthesis of TSPO radiotracer [18F]FDPA based on spirocyclic iodonium ylide method and validation for human use vol.63, pp.3, 2011, https://doi.org/10.1002/jlcr.3824
- 18F‐labeled 1,2,3‐triazole‐linked Glu‐urea‐Lys‐based PSMA ligands have good pharmacokinetic properties for positron emission tomography imaging of prosta vol.80, pp.16, 2020, https://doi.org/10.1002/pros.24062
- A non-anhydrous, minimally basic protocol for the simplification of nucleophilic 18 F-fluorination chemistry vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-61845-y
- Automated synthesis of the 16α-[18F]fluoroestradiol ([18F]FES): minimization of precursor amount and resulting benefits vol.108, pp.12, 2020, https://doi.org/10.1515/ract-2020-0058
- Aliphatic 18 F‐Radiofluorination: Recent Advances in the Labeling of Base‐Sensitive Substrates** vol.16, pp.17, 2011, https://doi.org/10.1002/cmdc.202100303
- Insights into Elution of Anion Exchange Cartridges: Opening the Path toward Aliphatic 18F-Radiolabeling of Base-Sensitive Tracers vol.4, pp.5, 2011, https://doi.org/10.1021/acsptsci.1c00133
- Phase Transfer Catalysts and Role of Reaction Environment in Nucleophilc Radiofluorinations in Automated Synthesizers vol.12, pp.1, 2011, https://doi.org/10.3390/app12010321