DOI QR코드

DOI QR Code

Selective Synthesis of 3,4-Dihydrocoumarins and Chalcones from Substituted Aryl Cinnamic Esters

  • Jeon, Jae-Ho (Institute of Natural Medicine, Hallym University) ;
  • Yang, Deok-Mo (Department of Chemistry and Institute of Applied Chemistry, Hallym University) ;
  • Jun, Jong-Gab (Institute of Natural Medicine, Hallym University)
  • Received : 2010.09.20
  • Accepted : 2010.10.21
  • Published : 2011.01.20

Abstract

Coumarins are ubiquitous in plant kingdom and have been used as antitumor, antifungals, anticoagulants, insecticides. Chalcones are also widespread in plant kingdom and have been known to possess diverse biological activities; antibacterial, antifungal, antitumor and anti-inflammatory, etc. As they are considered as important natural products, numerous synthetic approaches have been reported up to the present. We devise a new selective method of preparing dihydrocoumarins and chalcones from aryl cinnamates by the selection of reagents. Dihydrocoumarin derivatives were prepared selectively by using intramolecular cyclization catalyzed by p-toluene sulfonic acid. Also, chalcones were prepared by Fries-rearrangement catalyzed by $TiCl_4$. This method can be used for preparing various coumarin & chalcone compounds.

Keywords

References

  1. Lee, S.; Lee, Y. S.; Jung, S. H.; Shin, K. H.; Kim, B.-K.; Kang, S. S. Arch. Pharm. Res. 2003, 26, 727-730. https://doi.org/10.1007/BF02976682
  2. Sardari, S.; Mori, Y.; Horita, K.; Micetich, R.G.; Nishibe, S.; Daneshtalab, M. Bioorg. Med. Chem. 1999, 7, 1933-1940. https://doi.org/10.1016/S0968-0896(99)00138-8
  3. Nolan, K. A.; Doncaster, J. R.; Dunstan, M. S.; Scott, K. A.; Frenkel, A. D.; Siegel, D.; Ross, D.; Barnes, J.; Levy, C.; Leys, D.; Whitehead, R. C.; Stratford, I. J.; Bryce, R. A. J. Med. Chem. 2009, 52, 7142-7156. https://doi.org/10.1021/jm9011609
  4. Spiegelhauer, O.; Dickert, F.; Mende, S.; Niks, D.; Hille, R.; Ullmann, M.; Dobbek, H. Biochemistry 2009, 48, 11412-11420. https://doi.org/10.1021/bi901370u
  5. Henry, C. E.; Kwon, O. Org. Lett. 2007, 9, 3069-3072. https://doi.org/10.1021/ol071181d
  6. Thornes, R. D.; Wall, P. G. Control of blow fly strike in sheep by coumarin. Vet. Rec. 1991, 129, 496. https://doi.org/10.1136/vr.129.22.496
  7. Paliwal, S.; Wales, M.; Good, T.; Grimsley, J.; Wild, J.; Simonian, A. Anal. Chim. Acta 2007, 596, 9-15. https://doi.org/10.1016/j.aca.2007.05.034
  8. Griguere, D.; Cloutier, P.; Roy, R. J. Org. Chem. 2009, 74, 8480-8483. https://doi.org/10.1021/jo901855p
  9. Scatigno, A, C.; Garrido, S. S.; Marchetto, R. J. Peptide Sci. 2004, 10, 566-577. https://doi.org/10.1002/psc.565
  10. Muicki, B.; Periers, A.-M.; Piombo, L.; Laurin, P.; Klich, M.; Dupuis-Hamelin, C.; Lassaigne, P.; Bonnefoy, A. Tetrahedron Lett. 2003, 44, 9259-9262. https://doi.org/10.1016/j.tetlet.2003.10.076
  11. Coleman, R. S.; Berg, M. A.; Murphy, C, J. Tetrahedron 2007, 63, 3450-3456. https://doi.org/10.1016/j.tet.2006.12.096
  12. Iinuma, M.; Tanaka, T.; Mizuno, M.; Katsuzaki, T.; Ogawa, H. Chem. Pharm. Bull. 1989, 37, 1813-1815. https://doi.org/10.1248/cpb.37.1813
  13. Takechi, M.; Tanaka, Y.; Takehara, M.; Nonaka, G.-I.; Nishioka, I. Phytochemistry 1985, 24, 2245-2250. https://doi.org/10.1016/S0031-9422(00)83018-6
  14. Hsu, F. L.; Nonaka, G.-I.; Nishioka, I. Chem. Pharm. Bull. 1985, 33, 3142-3152. https://doi.org/10.1248/cpb.33.3142
  15. Adams, T. B.; Greer, D. B.; Doull, J.; Munro, I. C.; Newberne, P.; Portoghese, P. S.; Smith, R. L.; Wagner, B. M.; Weil, C. S.; Woods, L. A.; Ford, R. A. Food Chem. Toxicol. 1988, 36, 249-278.
  16. Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633-639. https://doi.org/10.1021/ar000209h
  17. Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731-1770. https://doi.org/10.1021/cr0104330
  18. Li, K.; Foresee, L. N.; Tunge, J. A. J. Org. Chem. 2005, 70, 2881-2883. https://doi.org/10.1021/jo0477650
  19. Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley and Sons: New York, 1994.
  20. McGuire, M. A.; Shilcrat, S. C.; Sorenson, E. Tetrahedron Lett. 1999, 40, 3293-3296. https://doi.org/10.1016/S0040-4039(99)00478-5
  21. Johnston, K. M. Tetrahedron 1968, 24, 5595-5600. https://doi.org/10.1016/0040-4020(68)88157-8
  22. Fillion, E.; Dumas, A. M.; Kuropatwa, B. A.; Malhotra, N. R.; Sitler, T. C. J. Org. Chem. 2006, 71, 409-412. https://doi.org/10.1021/jo052000t
  23. Barluenga, J.; Andina, F.; Aznar, F. Org. Lett. 2006, 8, 2703-2706. https://doi.org/10.1021/ol060702e
  24. Jagdale, A. R.; Sudalai, A. Tetrahedron Lett. 2007, 48, 4895-4898. https://doi.org/10.1016/j.tetlet.2007.05.059
  25. Piao, C.-R.; Zhao, Y.-L.; Han, X.-D.; Liu, Q. J. Org. Chem. 2008, 73, 2264-2269. https://doi.org/10.1021/jo702414y
  26. Alden-Danforth, E.; Scerba, M. T.; Lectka, T. Org. Lett. 2008, 10, 4951-4953. https://doi.org/10.1021/ol802029e
  27. Haser, K.; Wenk, H. H.; Schwab, W. J. Agric. Food Chem. 2006, 54, 6236-6240. https://doi.org/10.1021/jf061334w
  28. Potdar, M. K.; Mohile, S. S.; Salunkhe, M. M. Tetrahedron Lett. 2001, 42, 9285-9287. https://doi.org/10.1016/S0040-4039(01)02041-X
  29. Bodanszky, M. Peptide Chemistry-A practical Textbook, 2nd Ed.; Springer-Verlag, 1993.
  30. Yoshida, J.-I.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem. Rev. 2008, 108, 2265-2299. https://doi.org/10.1021/cr0680843
  31. March, J. Advanced organic Chemistry, 3rd Ed.; John Wiley & Sons: Chichester, 1985; and references cited there in.

Cited by

  1. ChemInform Abstract: Selective Synthesis of 3,4-Dihydrocoumarins and Chalcones from Substituted Aryl Cinnamic Esters. vol.42, pp.23, 2011, https://doi.org/10.1002/chin.201123127
  2. More Flavonoids from the Ethyl Acetate Extract of Ononis angustissima Species vol.49, pp.4, 2013, https://doi.org/10.1007/s10600-013-0728-4
  3. Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53) vol.116, pp.4, 2014, https://doi.org/10.1111/jam.12417
  4. Syntheses and Biological Activities of Chroman-2-ones. A Review vol.47, pp.1, 2015, https://doi.org/10.1080/00304948.2015.983805
  5. Hydroarylation of cinnamic acid with phenols catalyzed by acidic ionic liquid [H-NMP]HSO4: computational assessment on substituent effect vol.42, pp.7, 2016, https://doi.org/10.1007/s11164-016-2471-5
  6. Elucidating Latent Mechanistic Complexity in Competing Acid-Catalyzed Reactions of Salicylaldehyde-Derived Baylis–Hillman Adducts vol.81, pp.1, 2016, https://doi.org/10.1021/acs.joc.5b02372
  7. Synthesis and Antimicrobial Activity of Methoxy- Substituted γ-Oxa-ε-lactones Derived from Flavanones vol.24, pp.22, 2011, https://doi.org/10.3390/molecules24224151
  8. Microwave accelerated the solvent-free synthesis of 4-aryl-3,4-dihydrocoumarin via the tandem reaction of cinnamic acids with phenols catalyzed by Amberlyst 15 resin vol.51, pp.14, 2011, https://doi.org/10.1080/00397911.2021.1925918