References
- Lee, S.; Lee, Y. S.; Jung, S. H.; Shin, K. H.; Kim, B.-K.; Kang, S. S. Arch. Pharm. Res. 2003, 26, 727-730. https://doi.org/10.1007/BF02976682
- Sardari, S.; Mori, Y.; Horita, K.; Micetich, R.G.; Nishibe, S.; Daneshtalab, M. Bioorg. Med. Chem. 1999, 7, 1933-1940. https://doi.org/10.1016/S0968-0896(99)00138-8
- Nolan, K. A.; Doncaster, J. R.; Dunstan, M. S.; Scott, K. A.; Frenkel, A. D.; Siegel, D.; Ross, D.; Barnes, J.; Levy, C.; Leys, D.; Whitehead, R. C.; Stratford, I. J.; Bryce, R. A. J. Med. Chem. 2009, 52, 7142-7156. https://doi.org/10.1021/jm9011609
- Spiegelhauer, O.; Dickert, F.; Mende, S.; Niks, D.; Hille, R.; Ullmann, M.; Dobbek, H. Biochemistry 2009, 48, 11412-11420. https://doi.org/10.1021/bi901370u
- Henry, C. E.; Kwon, O. Org. Lett. 2007, 9, 3069-3072. https://doi.org/10.1021/ol071181d
- Thornes, R. D.; Wall, P. G. Control of blow fly strike in sheep by coumarin. Vet. Rec. 1991, 129, 496. https://doi.org/10.1136/vr.129.22.496
- Paliwal, S.; Wales, M.; Good, T.; Grimsley, J.; Wild, J.; Simonian, A. Anal. Chim. Acta 2007, 596, 9-15. https://doi.org/10.1016/j.aca.2007.05.034
- Griguere, D.; Cloutier, P.; Roy, R. J. Org. Chem. 2009, 74, 8480-8483. https://doi.org/10.1021/jo901855p
- Scatigno, A, C.; Garrido, S. S.; Marchetto, R. J. Peptide Sci. 2004, 10, 566-577. https://doi.org/10.1002/psc.565
- Muicki, B.; Periers, A.-M.; Piombo, L.; Laurin, P.; Klich, M.; Dupuis-Hamelin, C.; Lassaigne, P.; Bonnefoy, A. Tetrahedron Lett. 2003, 44, 9259-9262. https://doi.org/10.1016/j.tetlet.2003.10.076
- Coleman, R. S.; Berg, M. A.; Murphy, C, J. Tetrahedron 2007, 63, 3450-3456. https://doi.org/10.1016/j.tet.2006.12.096
- Iinuma, M.; Tanaka, T.; Mizuno, M.; Katsuzaki, T.; Ogawa, H. Chem. Pharm. Bull. 1989, 37, 1813-1815. https://doi.org/10.1248/cpb.37.1813
- Takechi, M.; Tanaka, Y.; Takehara, M.; Nonaka, G.-I.; Nishioka, I. Phytochemistry 1985, 24, 2245-2250. https://doi.org/10.1016/S0031-9422(00)83018-6
- Hsu, F. L.; Nonaka, G.-I.; Nishioka, I. Chem. Pharm. Bull. 1985, 33, 3142-3152. https://doi.org/10.1248/cpb.33.3142
- Adams, T. B.; Greer, D. B.; Doull, J.; Munro, I. C.; Newberne, P.; Portoghese, P. S.; Smith, R. L.; Wagner, B. M.; Weil, C. S.; Woods, L. A.; Ford, R. A. Food Chem. Toxicol. 1988, 36, 249-278.
- Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633-639. https://doi.org/10.1021/ar000209h
- Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731-1770. https://doi.org/10.1021/cr0104330
- Li, K.; Foresee, L. N.; Tunge, J. A. J. Org. Chem. 2005, 70, 2881-2883. https://doi.org/10.1021/jo0477650
- Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley and Sons: New York, 1994.
- McGuire, M. A.; Shilcrat, S. C.; Sorenson, E. Tetrahedron Lett. 1999, 40, 3293-3296. https://doi.org/10.1016/S0040-4039(99)00478-5
- Johnston, K. M. Tetrahedron 1968, 24, 5595-5600. https://doi.org/10.1016/0040-4020(68)88157-8
- Fillion, E.; Dumas, A. M.; Kuropatwa, B. A.; Malhotra, N. R.; Sitler, T. C. J. Org. Chem. 2006, 71, 409-412. https://doi.org/10.1021/jo052000t
- Barluenga, J.; Andina, F.; Aznar, F. Org. Lett. 2006, 8, 2703-2706. https://doi.org/10.1021/ol060702e
- Jagdale, A. R.; Sudalai, A. Tetrahedron Lett. 2007, 48, 4895-4898. https://doi.org/10.1016/j.tetlet.2007.05.059
- Piao, C.-R.; Zhao, Y.-L.; Han, X.-D.; Liu, Q. J. Org. Chem. 2008, 73, 2264-2269. https://doi.org/10.1021/jo702414y
- Alden-Danforth, E.; Scerba, M. T.; Lectka, T. Org. Lett. 2008, 10, 4951-4953. https://doi.org/10.1021/ol802029e
- Haser, K.; Wenk, H. H.; Schwab, W. J. Agric. Food Chem. 2006, 54, 6236-6240. https://doi.org/10.1021/jf061334w
- Potdar, M. K.; Mohile, S. S.; Salunkhe, M. M. Tetrahedron Lett. 2001, 42, 9285-9287. https://doi.org/10.1016/S0040-4039(01)02041-X
- Bodanszky, M. Peptide Chemistry-A practical Textbook, 2nd Ed.; Springer-Verlag, 1993.
- Yoshida, J.-I.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem. Rev. 2008, 108, 2265-2299. https://doi.org/10.1021/cr0680843
- March, J. Advanced organic Chemistry, 3rd Ed.; John Wiley & Sons: Chichester, 1985; and references cited there in.
Cited by
- ChemInform Abstract: Selective Synthesis of 3,4-Dihydrocoumarins and Chalcones from Substituted Aryl Cinnamic Esters. vol.42, pp.23, 2011, https://doi.org/10.1002/chin.201123127
- More Flavonoids from the Ethyl Acetate Extract of Ononis angustissima Species vol.49, pp.4, 2013, https://doi.org/10.1007/s10600-013-0728-4
- Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53) vol.116, pp.4, 2014, https://doi.org/10.1111/jam.12417
- Syntheses and Biological Activities of Chroman-2-ones. A Review vol.47, pp.1, 2015, https://doi.org/10.1080/00304948.2015.983805
- Hydroarylation of cinnamic acid with phenols catalyzed by acidic ionic liquid [H-NMP]HSO4: computational assessment on substituent effect vol.42, pp.7, 2016, https://doi.org/10.1007/s11164-016-2471-5
- Elucidating Latent Mechanistic Complexity in Competing Acid-Catalyzed Reactions of Salicylaldehyde-Derived Baylis–Hillman Adducts vol.81, pp.1, 2016, https://doi.org/10.1021/acs.joc.5b02372
- Synthesis and Antimicrobial Activity of Methoxy- Substituted γ-Oxa-ε-lactones Derived from Flavanones vol.24, pp.22, 2011, https://doi.org/10.3390/molecules24224151
- Microwave accelerated the solvent-free synthesis of 4-aryl-3,4-dihydrocoumarin via the tandem reaction of cinnamic acids with phenols catalyzed by Amberlyst 15 resin vol.51, pp.14, 2011, https://doi.org/10.1080/00397911.2021.1925918