DOI QR코드

DOI QR Code

Effect of Unsaturation on the Stability of C18 Polyunsaturated Fatty Acids Vesicles Suspension in Aqueous Solution

  • Teo, Yin Yin (Department of Chemistry, Faculty of Science, University of Malaya) ;
  • Misran, Misni (Department of Chemistry, Faculty of Science, University of Malaya) ;
  • Low, Kah Hin (Department of Chemistry, Faculty of Science, University of Malaya) ;
  • Zain, Sharifuddin Md. (Department of Chemistry, Faculty of Science, University of Malaya)
  • Received : 2010.06.18
  • Accepted : 2010.10.21
  • Published : 2011.01.20

Abstract

Degree of unsaturation in fatty acid molecules plays an important role in the formation of vesicles. Vesicle formation from C18 fatty acids with different amount of double bonds such as oleic acid, linoleic acid and linolenic acid with the incorporation of 1,2-dipalmitoyl-sn-glycerol-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DPPE-PEG2000) have been examined by TEM. Critical vesicular concentrations (CVC) of the vesicle suspension are determined by turbidity and surface tension methods. The CVC of fatty acids increases when the amount of unsaturation in the alkyl chain increases. On the other hand, stability of vesicle suspension has been examined by using particle size and zeta potential at $30^{\circ}C$. There was a dramatic decrease in particle size measurement from mono-unsaturation to tri-unsaturation which could be due to the effect of fluidity in the membrane bilayer caused by different degree of unsaturation. The values of zeta potential for vesicles that were formed without the incorporation of DPPE-PEG2000 were in the range of -70 mV to -100 mV. It has been observed that the incorporation of DPPEPEG2000 to the vesicle reduces the magnitude of zeta potential. However, this phenomenon does not obviously seen in fatty acid vesicles formed by linoleate-linoleic acid and linolenate-linolenic acid. We therefore conclude that the addition of DPPE-PEG2000 does not effectively improve the stability of the linoleate-linoleic acid and linolenatelinolenic acid vesicle at pH 9.0 after the evaluation of their particle size and zeta potential over a period of 30 days. Although the vesicles formed were not stable for more than 10 days, they have displayed the potential in encapsulating the active ingredients such as vitamin E and calcein. The results show that the loading efficiencies of vitamin E are of encouraging value.

Keywords

References

  1. Morigaki, K.; Walde, P.; Misran, M.; Robinson, B. H. Colloids Surf. A: Physiochem. Eng. Aspects. 2003, 213, 37. https://doi.org/10.1016/S0927-7757(02)00336-9
  2. Boris, B. N.; Tiong, N. S.; Misran, M. Coll. Surf. A: Physiochem. Eng. Aspects. 2004, 236, 7. https://doi.org/10.1016/j.colsurfa.2004.01.002
  3. Bangham, A. D.; Sandish, M. M.; Watkins, J. C. J. Mol. Biol. 1965, 13, 239.
  4. Gebicki, J. M.; Hicks, M. Nature 1973, 243, 232. https://doi.org/10.1038/243232a0
  5. Hargreaves, J. W.; Deamer, D. W. Biochemistry 1978, 17, 3759. https://doi.org/10.1021/bi00611a014
  6. Gebicki, J. M.; Hicks, M. Chem. Phys. Lipids 1976, 16, 142. https://doi.org/10.1016/0009-3084(76)90006-2
  7. Rogerson, M. L.; Robinson, B. H.; Bucak, S.; Walde, P. Coll. Surf. B: Biointerfaces 2006, 48, 24. https://doi.org/10.1016/j.colsurfb.2006.01.001
  8. Namani, T.; Ishikawa, T.; Morigaki, K.; Walde, P. Coll. Surf. B: Biointerfaces. 2007, 54, 118. https://doi.org/10.1016/j.colsurfb.2006.05.022
  9. Albena, N. K; Malcom, N. J. Biochimica et Biophysica Acta 1996, 1304, 120. https://doi.org/10.1016/S0005-2760(96)00112-9
  10. Minakshi, G.; Tathagata, D.; Narendra, K. J. AAPS PharmaSciTech. 2007, 8(2), E1.
  11. Klibanov, A. L.; Maruyama, K.; Torchillin, V. P.; Huang, L. FEBS Lett. 1990, 268, 235. https://doi.org/10.1016/0014-5793(90)81016-H
  12. Ishii, F.; Nagasaka, Y. Journal of Dispersion Science and Technology 2001, 22, 97. https://doi.org/10.1081/DIS-100102684
  13. Nii, T.; Takamura, A.; Mohri, K.; Ishii, F. Colloids and Surfaces B: Biointerfaces 2002, 27, 323. https://doi.org/10.1016/S0927-7765(02)00097-8
  14. Kanicky, J. R.; Dinesh, O. S. J. Colloid and Interface Science 2002, 256, 201. https://doi.org/10.1006/jcis.2001.8009
  15. Cevc, G. Biochemistry 1991, 30, 7186. https://doi.org/10.1021/bi00243a021
  16. Keough, K. M.; Giffin, B.; Kariel, N. Biochim. Biophys. Acta 1987, 902(1), 1. https://doi.org/10.1016/0005-2736(87)90129-5
  17. Stubbs, C. D.; Kouyama, T.; Kinosita, K.; Ikegami, A. Biochemistry 1981, 20, 4257. https://doi.org/10.1021/bi00518a004
  18. Liu, N.; Park, H. J. Colloids and Surfaces B: Biointerfaces 2010, 76, 16-19. https://doi.org/10.1016/j.colsurfb.2009.09.041
  19. Bahiaa, C. O. A. P.; Azevedoa, E. G.; Ferreirab, A. M. L.; Frezarda, F. European Journal of Pharmaceutical Sciences 2010, 39, 90-96. https://doi.org/10.1016/j.ejps.2009.10.016
  20. Memoli. A.; Palermiti, G. L.; Travagli, V.; Alhaique, F. J. Soc. Cosme. Chem. 1994, 45, 167-172.
  21. Manosroi, A.; Wongtrakul, P.; Manosroi, J.; Sakai, H.; Sugawara, F.; Yuasa, M.; A. M. Colloids and Surfaces B: Biointerfaces 2003, 30, 129-138. https://doi.org/10.1016/S0927-7765(03)00080-8
  22. Fan, X. J.; Liu, Q.; Zhen, P.; Zhang, Y.; Hu, X. Journal of Chinese Pharmaceutical Sciences 2007, 16, 96-100.

Cited by

  1. Partitioning of Oleic Acid into Phosphatidylcholine Membranes Is Amplified by Strain vol.117, pp.40, 2013, https://doi.org/10.1021/jp404135g
  2. Synthesis and Evaluation of Poly(Sodium 2-Acrylamido-2-Methylpropane Sulfonate-co-Styrene)/Magnetite Nanoparticle Composites as Corrosion Inhibitors for Steel vol.19, pp.2, 2014, https://doi.org/10.3390/molecules19021713
  3. Comparing different sterol containing solid lipid nanoparticles for targeted delivery of quercetin in hepatocellular carcinoma vol.24, pp.3, 2014, https://doi.org/10.3109/08982104.2013.868476
  4. Development and Characterization of DOPEPEG2000 Coated Oleic Acid Liposomes Encapsulating Anticancer Drugs vol.20, pp.2, 2017, https://doi.org/10.1007/s11743-016-1914-8
  5. pharmacokinetics study in human vol.24, pp.1, 2017, https://doi.org/10.1080/10717544.2017.1334719
  6. skin permeation vol.43, pp.6, 2017, https://doi.org/10.1080/03639045.2017.1287717
  7. Preparation and Characterization of PEGylated C18 Fatty Acids/Anti-SNAP25 Antibody-Targeted Liposomes vol.13, pp.2, 2011, https://doi.org/10.2174/2212796812666180912113156
  8. Development of nanostructured lipid carrier (NLC) assisted with polysorbate nonionic surfactants as a carrier for l-ascorbic acid and Gold Tri.E 30 vol.57, pp.9, 2011, https://doi.org/10.1007/s13197-020-04357-x