DOI QR코드

DOI QR Code

Analysis of the Wettability of Partially Fluorinated Polymers Reveals the Surprisingly Strong Acid-Base Character of Poly(vinylidene Fluoride)

  • Lee, Sang-Wha (Department of Chemical and Bio Engineering, Kyungwon University) ;
  • Park, Joon-Seo (Department of Chemistry, Eastern University) ;
  • Lee, T. Randall (Department of Chemistry, University of Houston)
  • Received : 2010.03.23
  • Accepted : 2010.08.25
  • Published : 2011.01.20

Abstract

The wettabilities of the partially fluorinated polymers (ethylene-tetrafluoroethylene copolymer (ETFE), ethylenechlorotrifluoroethylene copolymer (ECTFE), and poly(vinylidene fluoride) (PVDF)) were investigated by contact angle measurements. Zisman plots for ETFE and ECTFE exhibited linear relationships, while the Zisman plot for PVDF showed a slight curvature, which was interpreted to indicate strong non-dispersive interactions between the surface and the contacting liquids. The Lifshitz-van der Waals forces of the fluoropolymers were estimated to increase in the order of ETFE < PVDF $\ll$ ECTFE. An evaluation of the polar or "acid-base" interaction energies showed that PVDF, which possesses the most acidic hydrogens among the examined fluoropolymers, has the strongest acid-base interactions.

Keywords

References

  1. Fluoropolymers; Hougham, G., Cassidy, P. E., Johns, K., Davidson, T., Eds.; Plenum: New York, 1999.
  2. Kinloch, A. J. Adhesion and Adhesives; Chapman and Hall: New York, 1987.
  3. Imbalazano, J. F. Chem. Eng. Prog. 1991, 87, 69-73.
  4. Pittman, A. G. In Fluoropolymers; Wall, L. A., Ed.; Wiley: New York, 1971; Vol. 25, p 419.
  5. Modern Fluoropolymers: High Performance Polymers for Diverse Applications; Scheirs, J., Ed.; Wiley: New York, 1997.
  6. Bottino, A.; Capannelli, G.; Monticelli, O.; Piaggio, P. J. Membrane Sci. 2000, 166, 23-29. https://doi.org/10.1016/S0376-7388(99)00253-7
  7. Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Graetzel, M. Nat. Mater. 2003, 2, 402-407. https://doi.org/10.1038/nmat904
  8. Arora, P.; Zhang, Z. Chem. Rev. 2004, 104, 4419-4462. https://doi.org/10.1021/cr020738u
  9. Stephan, A. M.; Nahm, K. S. Polymer 2006, 47, 5952-5964. https://doi.org/10.1016/j.polymer.2006.05.069
  10. Panero, S.; Ciuffa, F.; D'Epifano, A.; Scrosati, B. Electrochim. Acta 2003, 48, 2009-2014. https://doi.org/10.1016/S0013-4686(03)00179-8
  11. Mokrini, A.; Huneault, M. A. J. Power Sources 2006, 154, 51-58. https://doi.org/10.1016/j.jpowsour.2005.04.021
  12. Chen, J.; Asano, M.; Maekawa, Y.; Yoshida, M. J. Membrane Sci. 2006, 277, 249-257. https://doi.org/10.1016/j.memsci.2005.10.036
  13. Benz, M.; Euler, W. B.; Gregory, O. J. Macromolecules 2002, 35, 2682-2688. https://doi.org/10.1021/ma011744f
  14. Ueberschlag, P. Sensor Review 2001, 21, 118-126. https://doi.org/10.1108/02602280110388315
  15. Cho, K.-Y.; Eom, J.-Y.; Jung, H.-Y.; Choi, N.-S.; Lee, Y. M.; Park, J.-K.; Choi, J.-H.; Park, K.-W.; Sung, Y.-E. Electrochim. Acta 2004, 50, 583-588. https://doi.org/10.1016/j.electacta.2004.03.063
  16. Ellison, A. H.; Zisman, W. A. J. Phys. Chem. 1954, 58, 260-5. https://doi.org/10.1021/j150513a020
  17. Colorado, R., Jr.; Lee, T. R. J. Phys. Org. Chem. 2000, 13, 796-807. https://doi.org/10.1002/1099-1395(200012)13:12<796::AID-POC317>3.0.CO;2-#
  18. Colorado, R., Jr.; Lee, T. R. Langmuir 2003, 19, 3288-3296. https://doi.org/10.1021/la0263763
  19. Lee, S.; Park, J.-S.; Lee, T. R. Langmuir 2008, 24, 4817-4826. https://doi.org/10.1021/la700902h
  20. Lee, S.; Knaebel, K. S. J. Appl. Polym. Sci. 1997, 64, 455-476. https://doi.org/10.1002/(SICI)1097-4628(19970418)64:3<455::AID-APP4>3.0.CO;2-J
  21. Benz, M.; Euler, W. B.; Gregory, O. J. Langmuir 2001, 17, 239-243. https://doi.org/10.1021/la001206g
  22. Encyclopedia of Polymer Science and Engineering, 2nd ed.; Mark, H. F., Bikales, N. M., Overberger, C. G., Menges, G., Eds.; Wiley: New York, 1986; Vol. 16.
  23. Dikshit, A. K.; Nandi, A. K. Macromolecules 2000, 33, 2616-2625. https://doi.org/10.1021/ma990898g
  24. Gao, Q.; Scheinbeim, J. I. Macromolecules 2000, 33, 7564-7572. https://doi.org/10.1021/ma000111i
  25. Holman, R. W.; Kavarnos, G. J. Polymer 1996, 37, 1697-1701. https://doi.org/10.1016/0032-3861(96)83721-9
  26. Lee, S. Ph.D. Thesis, Ohio State University, 1995.
  27. Radice, S.; Del Fanti, N.; Castiglioni, C.; Del Zoppo, M.; Zerbi, G. Macromolecules 1994, 27, 2194-9. https://doi.org/10.1021/ma00086a032
  28. Radice, S.; Del Fanti, N.; Zerbi, G. Polymer 1997, 38, 2753-2758. https://doi.org/10.1016/S0032-3861(97)85611-X
  29. Zisman, W. A. Adv. Chem. Ser. 1964, 43, 1-51. https://doi.org/10.1021/ba-1964-0043.ch001
  30. Chen, F.; Chang, W. V. Langmuir 1991, 7, 2401-4. https://doi.org/10.1021/la00058a071
  31. Jie-Rong, C.; Wakida, T. J. Appl. Polym. Sci. 1997, 63, 1733-1739. https://doi.org/10.1002/(SICI)1097-4628(19970328)63:13<1733::AID-APP4>3.0.CO;2-H
  32. Bernett, M. K.; Zisman, W. A. J. Phys. Chem. 1960, 64, 1292-4. https://doi.org/10.1021/j100838a040
  33. Baier, R. E.; Zisman, W. A. Macromolecules 1970, 3, 462-8. https://doi.org/10.1021/ma60016a017
  34. Fox, H. W.; Zisman, W. A. J. Colloid Sci. 1952, 7, 109-21. https://doi.org/10.1016/0095-8522(52)90054-8
  35. Baier, R. E.; Zisman, W. A. Macromolecules 1970, 3, 70-9. https://doi.org/10.1021/ma60013a015
  36. Morra, M.; Occhiello, E.; Garbassi, F. Langmuir 1989, 5, 872-876. https://doi.org/10.1021/la00087a050
  37. Tretinnikov, O. N. J. Colloid Interf. Sci. 2000, 229, 644-647. https://doi.org/10.1006/jcis.2000.7024
  38. Extrand, C. W. J. Colloid Interf. Sci. 2002, 248, 136-142. https://doi.org/10.1006/jcis.2001.8172
  39. Shon, Y.-S.; Lee, S.; Colorado, R., Jr.; Perry, S. S.; Lee, T. R. J. Am. Chem. Soc. 2000, 122, 7556-7563. https://doi.org/10.1021/ja000403z
  40. De Gennes, P. G. Rev. Mod. Phys. 1985, 57, 827-63. https://doi.org/10.1103/RevModPhys.57.827
  41. van Oss, C. J.; Chaudhury, M. K.; Good, R. J. Chem. Rev. 1988, 88, 927-41. https://doi.org/10.1021/cr00088a006
  42. van Oss, C. J.; Giese, R. F., Jr.; Good, R. J. Langmuir 1990, 6, 1711-13. https://doi.org/10.1021/la00101a017
  43. Wu, W.; Giese, R. F., Jr.; van Oss, C. J. Langmuir 1995, 11, 379-82. https://doi.org/10.1021/la00001a064
  44. Janczuk, B.; Bialopiotrowicz, T.; Zdziennicka, A. J. Colloid Interf. Sci. 1999, 211, 96-103. https://doi.org/10.1006/jcis.1998.5990
  45. Gregory, J. K.; Clary, D. C.; Liu, K.; Brown, M. G.; Saykally, R. J. Science 1997, 275, 814-817. https://doi.org/10.1126/science.275.5301.814
  46. Silvestrelli, P. L.; Parrinello, M. Phys. Rev. Lett. 1999, 82, 3308. https://doi.org/10.1103/PhysRevLett.82.3308
  47. Vogler, E. A. Adv. Colloid Interface Sci. 1998, 74, 69-117. https://doi.org/10.1016/S0001-8686(97)00040-7
  48. Yoon, R.-H.; Flinn, D. H.; Rabinovich, Y. I. J. Colloid Interf. Sci. 1997, 185, 363-370. https://doi.org/10.1006/jcis.1996.4583
  49. Schakenraad, J. M.; Busscher, H. J.; Wildevuur, C. R. H.; Arends, J. J. Biomed. Mater. Res. 1986, 20, 773-784. https://doi.org/10.1002/jbm.820200609
  50. Janczuk, B.; Kerkeb, M. L.; Bialopiotrowicz, T.; Gonzalez-Caballero, F. J. Colloid Interf. Sci. 1992, 151, 333-42. https://doi.org/10.1016/0021-9797(92)90482-2
  51. Janczuk, B.; Wojcik, W.; Zdziennicka, A. J. Colloid Interf. Sci. 1993, 157, 384-93. https://doi.org/10.1006/jcis.1993.1200
  52. Fowkes, F. M.; Riddle, F. L., Jr.; Pastore, W. E.; Weber, A. A. Colloid. Surface 1990, 43, 367-87. https://doi.org/10.1016/0166-6622(90)80298-I
  53. Metrangolo, P.; Resnati, G. Chem. Eur. J. 2001, 7, 2511-2519. https://doi.org/10.1002/1521-3765(20010618)7:12<2511::AID-CHEM25110>3.0.CO;2-T
  54. Fourmigue, M. Curr. Opin. Solid State Mater. Sci. 2009, 13, 36-45. https://doi.org/10.1016/j.cossms.2009.05.001
  55. Zisman, W. A. In Proceedings of the Symposium on Adhesion and Cohesion; Weiss, P., Ed.; Elsevier: Amsterdam, 1962; pp 176-208.
  56. van Oss, C. J.; Good, R. J.; Chaudhury, M. K. Langmuir 1988, 4, 884-91. https://doi.org/10.1021/la00082a018

Cited by

  1. Thermally curable fluorinated main chain benzoxazine polyethers via Ullmann coupling vol.4, pp.6, 2013, https://doi.org/10.1039/c2py21029k
  2. From the solvothermally treated poly(vinylidenefluoride) colloidal suspension to sticky hydrophobic coating vol.292, pp.4, 2014, https://doi.org/10.1007/s00396-013-3126-3
  3. Steady-state relaxation kinetics observed on fluoropolymers modified by ambient air plasma treatment vol.23, pp.4, 2015, https://doi.org/10.1007/s13233-015-3044-y
  4. Advances in the Preparation of Fluorinated Isoquinolines: A Decade of Progress vol.2017, pp.2090-9071, 2017, https://doi.org/10.1155/2017/2860123
  5. Thermolytic Grafting of Polystyrene to Porous Silicon vol.28, pp.1, 2016, https://doi.org/10.1021/acs.chemmater.5b03221
  6. Intaglio Contact Printing of Versatile Carbon Nanotube Composites and Its Applications for Miniaturizing High‐Performance Devices vol.18, pp.3, 2022, https://doi.org/10.1002/smll.202106174