DOI QR코드

DOI QR Code

On McCoy modules

  • Cui, Jian (DEPARTMENT OF MATHEMATICS SOUTHEAST UNIVERSITY) ;
  • Chen, Jianlong (DEPARTMENT OF MATHEMATICS SOUTHEAST UNIVERSITY)
  • Received : 2009.04.13
  • Published : 2011.01.31

Abstract

Extending the notion of McCoy rings, we introduce the class of McCoy modules. Over a given ring R, it contains the class of Armendariz modules (over R). Some properties of this class of modules are established, and equivalent conditions for McCoy modules are given. Moreover, we study the relationship between a module and its polynomial module. Several known results relating to McCoy rings can be obtained as corollaries of our results.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), 2265-2272. https://doi.org/10.1080/00927879808826274
  2. F. R. Anderson and K. R. Fuller, Rings and Categories of Modules, Second edition. Graduate Texts in Mathematics, 13. Springer-Verlag, New York, 1992.
  3. A. M. Buhphang and M. B. Rege, Semi-commutative modules and Armendariz modules, Arab. J. Math. Sci. 8 (2002), no. 1, 53-65.
  4. V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615. https://doi.org/10.1016/j.jpaa.2007.06.010
  5. F. Cedo, Zip rings and Mal'cev domains, Comm. Algebra 19 (1991), 1983-1991. https://doi.org/10.1080/00927879108824242
  6. C. Faith, Algebra I, Rings, Modules and Categories, 205-207, Springer-Verlag, New York, 1981.
  7. C. Faith, Rings with zero intersection property on annihilators: Zip rings, Publ. Mat. 33 (1989), no. 3, 329-332. https://doi.org/10.5565/PUBLMAT_33289_09
  8. C. Faith, Annihilator ideals, associated primes and Kasch-McCoy commutative rings, Comm. Algebra 19 (1991), no. 7, 1867-1892. https://doi.org/10.1080/00927879108824235
  9. A. Forsythe, Divisors of zero in polynomial rings, Amer. Math. Monthly 50 (1943), 7-8. https://doi.org/10.2307/2303985
  10. C. Y. Hong, N. K. Kim, T. K. Kwak, and Y. Lee, Extensions of zip rings, J. Pure Appl. Algebra 195 (2005), no. 3, 231-242. https://doi.org/10.1016/j.jpaa.2004.08.025
  11. N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488. https://doi.org/10.1006/jabr.1999.8017
  12. T. K. Lee and Y. Q. Zhou, Reduced modules, Rings, modules, algebras, and abelian groups, 365-377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York, 2004.
  13. Z. Lei, J. L. Chen, and Z. L. Ying, A question on McCoy rings, Bull. Austral. Math. Soc. 76 (2007), no. 1, 137-141. https://doi.org/10.1017/S0004972700039526
  14. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley, New York, 1987.
  15. N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295. https://doi.org/10.2307/2303094
  16. P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141. https://doi.org/10.1016/j.jalgebra.2005.10.008
  17. M. B. Rege and A. M. Buhphang, On reduced modules and rings, Int. Electron. J. Algebra 3 (2008), 58-74.
  18. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. https://doi.org/10.3792/pjaa.73.14
  19. W. R. Scott, Divisors of zero in polynomial rings, Amer. Math. Monthly 61 (1954), 336. https://doi.org/10.2307/2307474
  20. Z. L. Ying, J. L. Chen, and Z. Lei, Extensions of McCoy rings, Northeast Math. J. 24 (2008), no. 1, 85-94.
  21. J. M. Zelmanowitz, The finite intersection property on annihilator right ideals, Proc. Amer. Math. Soc. 57 (1976), no. 2, 213-216. https://doi.org/10.1090/S0002-9939-1976-0419512-6
  22. C. P. Zhang and J. L. Chen, Zip modules, Northeast Math. J. 24 (2008), no. 3, 240-256.

Cited by

  1. McCoy modules and related modules over commutative rings vol.45, pp.6, 2017, https://doi.org/10.1080/00927872.2016.1233218
  2. Extensions of linearly McCoy rings vol.50, pp.5, 2013, https://doi.org/10.4134/BKMS.2013.50.5.1501
  3. Power-Serieswise McCoy Modules vol.2018, pp.1563-5147, 2018, https://doi.org/10.1155/2018/9860597