Acknowledgement
Supported by : National Natural Science Foundation of China
References
- D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), 2265-2272. https://doi.org/10.1080/00927879808826274
- F. R. Anderson and K. R. Fuller, Rings and Categories of Modules, Second edition. Graduate Texts in Mathematics, 13. Springer-Verlag, New York, 1992.
- A. M. Buhphang and M. B. Rege, Semi-commutative modules and Armendariz modules, Arab. J. Math. Sci. 8 (2002), no. 1, 53-65.
- V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615. https://doi.org/10.1016/j.jpaa.2007.06.010
- F. Cedo, Zip rings and Mal'cev domains, Comm. Algebra 19 (1991), 1983-1991. https://doi.org/10.1080/00927879108824242
- C. Faith, Algebra I, Rings, Modules and Categories, 205-207, Springer-Verlag, New York, 1981.
- C. Faith, Rings with zero intersection property on annihilators: Zip rings, Publ. Mat. 33 (1989), no. 3, 329-332. https://doi.org/10.5565/PUBLMAT_33289_09
- C. Faith, Annihilator ideals, associated primes and Kasch-McCoy commutative rings, Comm. Algebra 19 (1991), no. 7, 1867-1892. https://doi.org/10.1080/00927879108824235
- A. Forsythe, Divisors of zero in polynomial rings, Amer. Math. Monthly 50 (1943), 7-8. https://doi.org/10.2307/2303985
- C. Y. Hong, N. K. Kim, T. K. Kwak, and Y. Lee, Extensions of zip rings, J. Pure Appl. Algebra 195 (2005), no. 3, 231-242. https://doi.org/10.1016/j.jpaa.2004.08.025
- N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488. https://doi.org/10.1006/jabr.1999.8017
- T. K. Lee and Y. Q. Zhou, Reduced modules, Rings, modules, algebras, and abelian groups, 365-377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York, 2004.
- Z. Lei, J. L. Chen, and Z. L. Ying, A question on McCoy rings, Bull. Austral. Math. Soc. 76 (2007), no. 1, 137-141. https://doi.org/10.1017/S0004972700039526
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley, New York, 1987.
- N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295. https://doi.org/10.2307/2303094
- P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141. https://doi.org/10.1016/j.jalgebra.2005.10.008
- M. B. Rege and A. M. Buhphang, On reduced modules and rings, Int. Electron. J. Algebra 3 (2008), 58-74.
- M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. https://doi.org/10.3792/pjaa.73.14
- W. R. Scott, Divisors of zero in polynomial rings, Amer. Math. Monthly 61 (1954), 336. https://doi.org/10.2307/2307474
- Z. L. Ying, J. L. Chen, and Z. Lei, Extensions of McCoy rings, Northeast Math. J. 24 (2008), no. 1, 85-94.
- J. M. Zelmanowitz, The finite intersection property on annihilator right ideals, Proc. Amer. Math. Soc. 57 (1976), no. 2, 213-216. https://doi.org/10.1090/S0002-9939-1976-0419512-6
- C. P. Zhang and J. L. Chen, Zip modules, Northeast Math. J. 24 (2008), no. 3, 240-256.
Cited by
- McCoy modules and related modules over commutative rings vol.45, pp.6, 2017, https://doi.org/10.1080/00927872.2016.1233218
- Extensions of linearly McCoy rings vol.50, pp.5, 2013, https://doi.org/10.4134/BKMS.2013.50.5.1501
- Power-Serieswise McCoy Modules vol.2018, pp.1563-5147, 2018, https://doi.org/10.1155/2018/9860597