DOI QR코드

DOI QR Code

APPROXIMATE CONTROLLABILITY FOR DIFFERENTIAL EQUATIONS WITH QUASI-AUTONOMOUS OPERATORS

  • Jeong, Jin-Mun (DIVISION OF MATHEMATICAL SCIENCES PUKYONG NATIONAL UNIVERSITY) ;
  • Ju, Eun-Young (DIVISION OF MATHEMATICAL SCIENCES PUKYONG NATIONAL UNIVERSITY) ;
  • Kang, Yong-Han (DEPARTMENT OF MATHEMATICS UNIVERSITY OF ULSAN)
  • Received : 2009.02.03
  • Published : 2011.01.31

Abstract

The approximate controllability for the nonlinear control system with nonlinear monotone hemicontinuous and coercive operator is studied. The existence, uniqueness and a variation of solutions of the system are also given.

Keywords

References

  1. N. U. Ahmed and K. L. Teo, Optimal control of systems governed by a class of nonlinearevolution equations in a reflexive Banach space, J. Optim. Theory Appl. 25 (1978), no.1, 57-81. https://doi.org/10.1007/BF00933255
  2. N. U. Ahmed and X. Xiang, Existence of solutions for a class of nonlinear evolutionequations with nonmonotone perturbations, Nonlinear Anal. 22 (1994), no. 1, 81-89. https://doi.org/10.1016/0362-546X(94)90007-8
  3. S. Aizicovici and N. S. Papageorgiou, Infinite-dimensional parametric optimal controlproblems, Japan J. Indust. Appl. Math. 10 (1993), no. 2, 307-332. https://doi.org/10.1007/BF03167579
  4. J. P. Aubin, Un theoreme de compasite, C. R. Acad. Sci. 256 (1963), 5042-5044.
  5. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach space, NoordhoffLeiden, Netherland, 1976.
  6. H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans lesespaces de Hilbert, North Holland, 1973.
  7. N. Hirano, Nonlinear evolution equations with nonmonotonic perturbations, NonlinearAnal. 13 (1989), no. 6, 599-609. https://doi.org/10.1016/0362-546X(89)90081-3
  8. J. M. Jeong and H. H. Roh, Approximate controllability for semilinear retarded systems,J. Math. Anal. Appl. 321 (2006), no. 2, 961-975. https://doi.org/10.1016/j.jmaa.2005.09.005
  9. K. Naito, Controllability of semilinear control systems dominated by the linear part,SIAM J. Control Optim. 25 (1987), no. 3, 715-722. https://doi.org/10.1137/0325040
  10. H. Tanabe, Equations of Evolution, Pitman-London, 1979.
  11. H. X. Zhou, Approximate controllability for a class of semilinear abstract equations,SIAM J. Control Optim. 21 (1983), no. 4, 551-565. https://doi.org/10.1137/0321033

Cited by

  1. Trimethylsilyldiazomethane derivatization coupled with solid-phase extraction for the determination of alendronate in human plasma by LC-MS/MS vol.402, pp.2, 2012, https://doi.org/10.1007/s00216-011-5467-4