DOI QR코드

DOI QR Code

Electrochemical Characterization of Anodic Tin Oxides with Nano-Porous Structure

나노 구조를 가지는 다공성 주석 산화물의 전기화학적 특성

  • Lee, Jae-Wook (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Su-Jin (School of Materials Science and Engineering, Pusan National University) ;
  • Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University)
  • Received : 2010.11.01
  • Accepted : 2010.11.13
  • Published : 2011.01.27

Abstract

A nano-porous structure of tin oxide was prepared using an anodic oxidation process and the sample's electrochemical properties were evaluated for application as an anode in a rechargeable lithium battery. Microscopic images of the as-anodized sample indicated that it has a nano-porous structure with an average pore size of several tens of nanometers and a pore wall size of about 10 nanometers; the structural/compositional analyses proved that it is amorphous stannous oxide (SnO). The powder form of the as-anodized specimen was satisfactorily lithiated and delithiated as the anode in a lithium battery. Furthermore, it showed high initial reversible capacity and superior rate performance when compared to previous fabrication attempts. Its excellent electrode performance is probably due to the effective alleviation of strain arising from a cycling-induced large volume change and the short diffusion length of lithium through the nano-structured sample. To further enhance the rate performance, the attempt was made to create porous tin oxide film on copper substrate by anodizing the electrodeposited tin. Nevertheless, the full anodization of tin film on a copper substrate led to the mechanical disintegration of the anodic tin oxide, due most likely to the vigorous gas evolution and the surface oxidation of copper substrate. The adhesion of anodic tin oxide to the substrate, together with the initial reversibility and cycling stability, needs to be further improved for its application to high-power electrode materials in lithium batteries.

Keywords

References

  1. I. A. Courtney and J. R. Dahn, J. Electrochem. Soc., 144, 2045 (1997). https://doi.org/10.1149/1.1837740
  2. M. Wachtler, M. Winter and J. O. Besenhard, J. Power Sourc., 105, 151 (2002). https://doi.org/10.1016/S0378-7753(01)00934-X
  3. R. A. Huggins, J. Power Sourc., 81-82, 13 (1999). https://doi.org/10.1016/S0378-7753(99)00124-X
  4. T. Watanabe, T. Hirose, K. Arai and M. Chikazawa, J. Jpn. Inst. Metals, 63, 496 (1999).
  5. N. Tamura, M. Fujimoto, M. Kamino and S. Fujitani, Electrochim. Acta, 49, 1949 (2004). https://doi.org/10.1016/j.electacta.2003.12.024
  6. S. D. Beattie and J. R. Dahn, J. Electrochem. Soc., 150, A894 (2003). https://doi.org/10.1149/1.1577336
  7. H. -R. Jung and H. -C. Shin, Kor. J. Mater. Res., 20(11), 592 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.11.592
  8. A. Sivashanmugam, T. P. Kumar, N. G. Renganathan, S. Gopukumar, M. Wohlfahrt-Mehrens and J. Garche, J. Power Sourc., 144, 197 (2005). https://doi.org/10.1016/j.jpowsour.2004.12.047
  9. M. Xu, M. Zhao, F. Wang, W. Guan, S. Yang and X. Song, Mater. Lett., 64, 921 (2010). https://doi.org/10.1016/j.matlet.2010.01.059
  10. J. P. Maranchi, A. F. Hepp and P. N. Kumta, Mater. Sci. Eng. B, 116, 327 (2005). https://doi.org/10.1016/j.mseb.2004.05.041
  11. L. Yuan, Z. P. Guo, K. Konstantinov, H. K. Liu and S. X. Dou, J. Power Sourc., 159, 345 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.048
  12. R. Yang, Y. Gu, Y. Li, J. Zheng and X. Li, Acta Mater., 58, 866 (2010). https://doi.org/10.1016/j.actamat.2009.10.001
  13. I. Sandu, T. Brousse, D. M. Schleich and M. Danot, J. Solid State Chem., 177, 4332 (2004). https://doi.org/10.1016/j.jssc.2004.06.032
  14. 2H. J. Wang, J. M. Wang, W. B. Fang, H. Wan, L. Liu, H. Q. Lian, H. B. Shao, W. X. Chen, J. Q. Zhang and C. N. Cao, Electrochem. Comm., 12, 194 (2010). https://doi.org/10.1016/j.elecom.2009.11.022
  15. H. -C. Shin, J. Dong and M. Liu, Adv. Mater. 16, 237 (2004). https://doi.org/10.1002/adma.200305660
  16. X. Zhu, L. Liu, Y. Song, H. Jia, H. Yu, X. Xiao and X. Yang, Mater. Lett., 62, 4038 (2008). https://doi.org/10.1016/j.matlet.2008.05.062
  17. J. -W. Lee and H. -C. Shin, in Abstract Book (MA2010-01) in Electrochemical Society Meeting (Vancouver, Canada, April 2010). ed. W. Van Schalkwijk, A. Manivannan, S. Narayan (Electrochemical Society, Pennington, NJ, USA, 2010) Abs.# B1-195.
  18. M. H. Chen, Z. C. Huang, G. T. Wu, G. M. Zhu, J. K. You and Z. G. Lin, Mater. Res. Bull., 38, 831 (2003). https://doi.org/10.1016/S0025-5408(03)00063-1
  19. S. Machill, T. Shodai, Y. Sakurai and J.-I. Yamaki, J. Power Sourc., 73, 216 (1998). https://doi.org/10.1016/S0378-7753(97)02810-3
  20. G. Du, C. Zhong, P. Zhang, Z. Guo, Z. Chen and H. Liu, Electrochim. Acta, 55, 2582 (2010). https://doi.org/10.1016/j.electacta.2009.12.031
  21. N. Li, C. R. Martin and B. Scrosati, Electrochem. Solid State Lett., 3, 316 (2000).
  22. K. Wan, S. F. Y. Li, Z. Gao and K. S. Siow, J. Power Sourc., 75, 9 (1998). https://doi.org/10.1016/S0378-7753(98)00076-7
  23. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka, Science, 276, 1395 (1997). https://doi.org/10.1126/science.276.5317.1395

Cited by

  1. Fabrication of Nano-Channeled Tin Oxide Film Electrode and Evaluation of Its Electrochemical Properties vol.22, pp.1, 2012, https://doi.org/10.3740/MRSK.2012.22.1.001
  2. ) films and their application as electrode materials in lithium-ion batteries vol.4, pp.2, 2016, https://doi.org/10.1039/C5TA06546A