DOI QR코드

DOI QR Code

눈개승마(Aruncus dioicus var. kamtschaticus Hara) 용매 추출물의 항산화 및 항균활성

Antioxidative and Antimicrobial Activities of Aruncus dioicus var. kamtschaticus Hara Extracts

  • 김미선 (충남대학교 식품영양학과) ;
  • 김경희 (충남대학교 식품영양학과) ;
  • 조지은 (충남대학교 식품영양학과) ;
  • 최종진 (충남농업기술원 태안백합시험장) ;
  • 김영진 (강원도농업기술원 특화작물시험장) ;
  • 김종환 (강원도농업기술원 특화작물시험장) ;
  • 장순애 (영동대학교 산학협력단) ;
  • 육홍선 (충남대학교 식품영양학과)
  • Kim, Mi-Seon (Dept. Of Food and Nutrition, Chungnam National University) ;
  • Kim, Kyoung-Hee (Dept. Of Food and Nutrition, Chungnam National University) ;
  • Jo, Ji-Eun (Dept. Of Food and Nutrition, Chungnam National University) ;
  • Choi, Jong-Jin (Taean Lily Experiment Station, Agricultural Research & Extention Services Chungnam Province) ;
  • Kim, Young-Jin (Specialty Crops Experiment Station, Gangwondo Agricultural Research and Extension Services) ;
  • Kim, Jong-Hwan (Specialty Crops Experiment Station, Gangwondo Agricultural Research and Extension Services) ;
  • Jang, Soon-Ae (Industry Academic Cooperation, Youngdoung University) ;
  • Yook, Hong-Sun (Dept. Of Food and Nutrition, Chungnam National University)
  • 투고 : 2010.10.15
  • 심사 : 2010.11.12
  • Published : 2011.01.31

Abstract

본 연구는 눈개승마의 80% 에탄올 추출물과 순차적 분획물에 대하여 총 폴리페놀 함량과 항산화 활성을 측정하고, tyrosinase 저해활성 및 항균활성을 측정하여 눈개승마의 생리활성효과와 식품 보존제 및 화장품 원료 등의 기능성 소재로서 활용가능성을 조사하였다. 눈개승마 추출물 및 분획물의 총 폴리페놀 함량은 ethyl acetate 분획물에서 $335.88{\pm}2.26$ mg/g GAE로 가장 높게 나타났다. 눈개승마의 DPPH radical 소거활성을 측정한 결과, ethyl acetate 분획물에서 $IC_{50}$이 0.06 mg/mL, n-butanol 분획물이 0.25 mg/mL로 높은 활성을 나타내었으며, ABTS 라디칼 소거능 활성(0.5 mg/mL)은 ethyl acetate, n-butanol 분획물이 각각 $99.16{\pm}0.09%$, $89.29{\pm}0.64%$의 활성을 나타내었다. 환원력과 FRAP value는 ethyl acetate 분획물이 유의적으로 높은 값을 나타내었다. SOD 유사활성은 $80.76{\pm}0.61%$(ethyl acetate), $72.34{\pm}0.79%$(n-butanol)로 나타났다. Tyrosinase 저해활성은 5 mg/mL의 농도에서 ethyl acetate 분획물이 $59.08{\pm}0.98%$로 나타났다. 항균활성은 chloroform 분획물(0.1 mg/disc)이 B. cereus(14 mm), B. subtilis(12.5 mm), S. aureus(10.8 mm), E. coli(20.7 mm)와 같이 4종류의 세균에 대해 항균활성이 높았으며, ethyl acetate 분획물은 E. coli(17.2 mm, 0.5 mg/disc)에 대해 나타내었다. 눈개승마 chloroform 분획물의 최소저해농도는 B. cereus가 $50{\mu}g$/mL, E. coli가 $25{\mu}g$/mL을 나타내었다. 따라서 본 연구 결과 눈개승마의 ethyl acetate와 n-butanol 분획물은 높은 항산화 활성을 가지고 있으며, chloroform 분획물은 높은 항균력을 가지고 있어 눈개승마의 분획물들은 식품첨가물 및 식품보존제 등 기능성 소재로서 활용될 수 있을 것으로 사료된다.

The solvent extracts of Aruncus dioicus var. kamtschaticus Hara, which were extracted by using several solvents with different polarities, were performed to investigate the antioxidant activities, whitening effect and antimicrobial activity. The content of total polyphenol of fractions from Aruncus dioicus var. kamtschaticus Hara extract showed the highest value ($335.88{\pm}2.26$ mg/g GAE) on ethyl acetate fraction. The ethyl acetate and n-butanol fractions were 0.06 mg/mL and 0.25 mg/mL as $IC_{50}$ values on DPPH radical scavenging, and $99.16{\pm}0.09%$ and $89.29{\pm}0.64%$ on ABTS radical scavenging activity, respectively. Also, reducing power and FRAP value were significantly higher on ethyl acetate fraction. The SOD like activity showed $80.76{\pm}0.61%$ on ethyl acetate and $72.34{\pm}0.79%$ on n-butanol. Tyrosinase inhibition activities (at 5 mg/mL) were $59.08{\pm}0.98%$ on ethyl acetate fraction. The chloroform fraction showed the strongest antimicrobial activities against B. cereus (14 mm), B. subtilis (12.5 mm), S. aureus (10.8 mm), E. coli (20.7 mm) at 0.1 mg/disc and the inhibition zone diameter of ethyl acetate fraction was 17.2 mm against E. coli at 0.5 mg/disc. The minimum inhibitory concentrations (MIC) of chloroform fraction against B. cereus and E. coli were 50 and $25{\mu}g$/mL, respectively. From these results, it is suggested that ethyl acetate and n-butanol fractions of Aruncus dioicus var. kamtschaticus Hara could be used as functional material for food additive ingredient and chloroform fraction could be suitable for the development of a food preservative.

Keywords

References

  1. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M,Telser J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  2. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. 2006.Free radicals, metals and antioxidants in oxidative stressinduced cancer. Chem Biol Ineract 160: 1-40. https://doi.org/10.1016/j.cbi.2005.12.009
  3. Heo SI, Wang MH. 2008. Antioxidant activity and cytotoxicity effect of extracts from Taraxacum mongolicum H. Kor J Pharmacogn 39: 255-259.
  4. Lee YM, Lee JJ, Lee MY. 2008. Antioxidative effect of Pimpinella brachycarpa ethanol extract. J Life Science 18:467-473. https://doi.org/10.5352/JLS.2008.18.4.467
  5. Rural Development Administration. 1999. Cultivation of wild vegetables (Farm book-60). Suwon, Korea. p 110-111.
  6. Lim SJ, Park NJ. 1994. A study on the development of new recipes of 5-Korean wild vegetables. Korean J Soc Food Sci 10: 412-419.
  7. Lee CB. 1999. Coloured flora of Korea. Hyangmoonsa,Seoul, Korea. p 431.
  8. Lee CB. 2003. Coloured flora of Korea. Hyangmoonsa,Seoul, Korea. p 515-516.
  9. Rural Development Administration. 1991. Wild plants in Korea. Suwon, Korea. p 110-111.
  10. Smith FJ. 1911. A case of poisoning by Tragopogon pratense, or goat's beard. Lancet 177: 794-795. https://doi.org/10.1016/S0140-6736(01)69110-4
  11. Shin JW. 2008. Effect of ethanol extracts of goat's beard on streptozotocin induced diabetic symptoms and oxidative stress in rats. J East Asian Soc Dietary Life 18: 939-948.
  12. Folin O, Denis W. 1912. On phosphotungastic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-249.
  13. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1198-1200.
  14. Pellegrin N, Roberta R, Min Y, Catherine RE. 1998.Screening of dietary carotenoids and carotenoid-rich fruit extract for antioxidant activities applying 2,2'-azinobis(3-ethylenbenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Method Enzymol 299: 379-389.
  15. Benzie IFF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal Biochem 230: 70-79.
  16. Oyaizu M. 1986. Studies on product of browning reaction prepared from glucose amine. Jap J Nutr 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  17. Marklund S, Gudrun M. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Dur J Biochem 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  18. Yagi A, Kanbara T, Morinobu N. 1987. The effect of tyrosinase inhibition for aloe. Planta Med 53: 517-519. https://doi.org/10.1055/s-2006-962799
  19. Choi BB, Lee HJ, Bang SK. 2004. Studies on the amino acid, sugar analysis and antioxidative effect of extracts from Artemisia sp. Korean J Food Sci Technol 17: 86-91.
  20. Lim JH, Kim BK, Park CE, Park KJ, Kim JC, Jeong JW,Jeong SW. 2008. Antioxidative and antimicrobial activities of persimmon leaf tea and green tea. J East Asian SocDietary Life 18: 797-804.
  21. Lee SO, Lee HJ, Yu MH, Im HG, Lee IS. 2005. Total polyphenol contents and antioxidant activities of methanol extractsfrom vegetables produced in Ullung island. Korean J Food Sci Technol 37: 233-240.
  22. Bnag MH, Song JC, Kim SL, Hur HS, Baek NI. 2001.Isolation of natural antioxidants rom the root of Zingiber officinale R. J Korean Soc Agric Chem Biotechnol 44: 202-205.
  23. Han JT, Lee SY, Kim KN, Baek NI. 2001. Rutin, antioxidant compound isolated form the fruit of Prunus memu. J Korean Soc Agric Chem Biotechnol 44: 35-37.
  24. Seo YH, Kim IJ, Yie AS, Min HK. 1999. Electron donating ability and contents of phenolic compounds, tocopherols and carotenoids in waxy corn (Zea mays L.). Korean J Food Sci Technol 31: 581-585.
  25. Lee SE, Kim YS, Kim JE, Bang JK, Seong NS. 2004.Antioxidant activity of Ulmus davidiana var. japonica N. and Hemipteleae davidii P. J Korean Med Crop Sci 12:321-327.
  26. Lee BB, Park SR, Han CS, Han DY, Park EJ, Park HR,Lee SC. 2008. Antioxidant activity and inhibition activity against α-amylase and α-glucosidase of Viola mandshuricaextracts. J Korean Soc Food Sci Nutr 37: 405-409. https://doi.org/10.3746/jkfn.2008.37.4.405
  27. Lee SJ, Sung NJ, Jeong HJ, Shin JH, Chung YC, Seo JK.2008. Antioxidant activities of methanol extracts fromPrunella vulgaris. J Korean Soc Food Sci Nutr 37: 1535-1541. https://doi.org/10.3746/jkfn.2008.37.12.1535
  28. Diplock AT. 1997. Will the good fairies please prove to us that vitamin E lessens human degenerative disease? Free Radic Res 27: 511-532.
  29. Shon MY, Kim SH, Nam SH, Cho YS, Park SK, Sung NJ.2004. Antioxidant activity of solvent extracts from Korean fermented tea. Korean J Food Preserv 11: 544-549.
  30. Moon GS, Ryu BM, Lee MJ. 2003. Components and antioxidative activities of Buchu (Chinese chives) harvested atdifferent times. Korean J Food Sci Technol 35: 493-498.
  31. Choi JI, Kim YJ, Kim JH, Song BS, Yoon Y, Byun MW,Kwon JH, Chun SS, Lee JW. 2009. Antioxidant activities of the extract fractions from Suaeda japonica. J KoreanSoc Food Sci Nutr 38: 131-135. https://doi.org/10.3746/jkfn.2009.38.2.131
  32. Azuma K, Nakayama M, Koshika M, Lppoushi K,Yamaguchi Y, Kohata K, Yamaguchi Y, Ito H, HigashioH. 1999. Phenolic antioxidants from the leaves of Corchorus olitorius L. J Agric Food Chem 47: 3963-3966. https://doi.org/10.1021/jf990347p
  33. Kwon TD, Choi SW, Lee SJ, Chung KW, Lee SC. 2001.Effects of polyphenol or vitamin C ingestion on antioxidative activity during exercise in rats. Kor J Phys Edu3: 891-899.
  34. Lim JD, Yu CY, Kim MJ, Yun SJ, Lee SJ, Kim NY, ChungIM. 2004. Comparison of SOD activity and phenolic compound contents in various Korean medicinal plants. Korean J Med Crop Sci 12: 191-202.
  35. Lim JA, Na YS, Baek SH. 2004. Antioxidative activity and nitrite scavenging ability of ethanol extract from Phyllostachys bambusoides. Korean J Food Sci Technol 36: 306-310.
  36. Son GM, Bae SM, Chung JY, Shin DJ, Sung TS. 2005.Antioxidative effect on the green tea and puer tea extracts.Korean J Food Nutr 18: 219-224.
  37. Lee YS. 2007. Physiological activities of ethanol extracts from different parts of Ailanthus altissima. J Korean Soc Food Sci Nutr 36: 389-394. https://doi.org/10.3746/jkfn.2007.36.4.389
  38. Choi BW, Kee BH, Kang JH. 1998. Screening of the tyrosinase inhibitors from marine algae and medicinal plants.Korean J Pharmacogn 29: 237-242.
  39. Roh EJ, Kim YS, Kim BG. 2009. Effect of antioxidation and inhibition of melanogenesis form Ligularia stenocephalaextract. J Korean Oil Chemists' Soc 26: 87-92.
  40. Cho JY, Choi II, Hwang EK. 2003. Antimicrobial activity of extracts from medicinal herbs against Escherichia coli. Korean J Vet Res 43: 625-631.
  41. Park UY, Chang DS, Cho HR. 1992. Screening of antimicrobial activity for medicinal herb extracts. J Korean Soc Food Nutr 21: 91-96.
  42. Choi MY, Won HR, Park HJ. 2004. Antimicrobial activities of Maesil (Prunus mume) extract. Korean J Community Living Science 15: 61-66.
  43. EI-Shenawy MA, Marth EH. 1989a. Inhibition or inactivation of L. monocytogenes by sodium benzoate together with some organic acid. J Food Prot 52: 771-776. https://doi.org/10.4315/0362-028X-52.11.771
  44. EI-Shenawy MA, Marth EH. 1989b. Behavior of L. monocytogenes in presence of sodium propionnate. J Food Microbiol 8: 85-89. https://doi.org/10.1016/0168-1605(89)90084-6
  45. EI-Shenawy MA, Marth EH. 1988. Inhibition or inactivation of L. monocytogenes by sorbic acid. J Food Prot 51: 842-847. https://doi.org/10.4315/0362-028X-51.11.842

Cited by

  1. Antioxidant and Inflammatory Mediators Regulation Effects of the Roots of Opuntia humifusa vol.57, pp.1, 2014, https://doi.org/10.3839/jabc.2014.001
  2. Free radical scavenging and α-glucosidase inhibitory effects of a roots extract of Aruncus dioicus var. kamtschaticus vol.23, pp.7, 2016, https://doi.org/10.11002/kjfp.2016.23.7.989
  3. Antioxidant Activities of Solvent Extracts from Pomegranate Endocarp vol.40, pp.12, 2011, https://doi.org/10.3746/jkfn.2011.40.12.1635
  4. Study on the Antioxidant Effect and Total Phenolics Content in Rosaceae Plant Stem vol.23, pp.12, 2014, https://doi.org/10.5322/JESI.2014.23.12.2129
  5. Effects of Storage Duration with Low Temperature and Wet Condition, Germination Temperature and Shading Rate on Germination of Aruncus dioicus var. kamtschaticus Seeds vol.23, pp.5, 2015, https://doi.org/10.7783/KJMCS.2015.23.5.370
  6. Antioxidant Effects of Sanchae-namul in Mice Fed High-Fat and High-Sucrose Diet vol.30, pp.4, 2014, https://doi.org/10.9724/kfcs.2014.30.4.369
  7. Antioxidant and Anti-wrinkling Effects of Aruncus dioicus var. kamtschaticus extract vol.19, pp.3, 2012, https://doi.org/10.11002/kjfp.2012.19.3.393
  8. Antioxidative Activities and Whitening Effects of Solvent Fraction from Prunus davidiana (Carriere) Franch. Fruit vol.41, pp.10, 2012, https://doi.org/10.3746/jkfn.2012.41.10.1363
  9. Antioxidative Effects of Campanula takesimana Nakai Extract vol.41, pp.10, 2012, https://doi.org/10.3746/jkfn.2012.41.10.1331
  10. Antioxidant Activities of Medicinal Plant Extracts vol.42, pp.4, 2013, https://doi.org/10.3746/jkfn.2013.42.4.512
  11. Anti-thrombosis Activity of the Aerial Part of Aruncus dioicus var kamtschaticus vol.24, pp.5, 2014, https://doi.org/10.5352/JLS.2014.24.5.515
  12. Physicochemical Characteristics and Antioxidant Activities of Pu-erh Tea Jellies vol.33, pp.6, 2017, https://doi.org/10.9724/kfcs.2017.33.6.636
  13. Effect of freeze, hot-air, and vacuum drying on antioxidant properties and quality characteristics of samnamul (Aruncus dioicus var. kamtschaticus) vol.25, pp.7, 2018, https://doi.org/10.11002/kjfp.2018.25.7.811
  14. NaCl 처리가 눈개승마[Aruncus dioicus var. kamtschaticus (Maxim.) H. Hara]의 생육과 생리활성에 미치는 영향 vol.25, pp.4, 2011, https://doi.org/10.11625/kjoa.2017.25.4.789
  15. 포도당 처리로 유도된 뇌신경세포 독성에 대한 눈개승마 추출물의 보호효과 vol.49, pp.6, 2011, https://doi.org/10.9721/kjfst.2017.49.6.668
  16. 차광처리가 눈개승마 유묘의 생장 및 생리적 특성에 미치는 영향 vol.27, pp.1, 2019, https://doi.org/10.7783/kjmcs.2019.27.1.30
  17. 부평초 추출물의 미백 및 항주름 효과 vol.62, pp.4, 2011, https://doi.org/10.3839/jabc.2019.054
  18. The complete chloroplast genome of Aruncus dioicus var. kamtschaticus (Rosaceae) vol.6, pp.3, 2011, https://doi.org/10.1080/23802359.2021.1906173