DOI QR코드

DOI QR Code

Identification of nucleolar and coiled-body phosphoprotein 1 (NOLC1) minimal promoter regulated by NF-κB and CREB

  • Gao, Xuesong (Beijing Ditan Hospital, Peking University Health Science Center) ;
  • Wang, Qi (Beijing Ditan Hospital, Capital Medical University) ;
  • Li, Wei (Beijing Ditan Hospital, Capital Medical University) ;
  • Yang, Biao (Beijing Ditan Hospital, Capital Medical University) ;
  • Song, Hao (Beijing Ditan Hospital, Capital Medical University) ;
  • Ju, Wei (Beijing Ditan Hospital, Capital Medical University) ;
  • Liu, Shunai (Beijing Ditan Hospital, Capital Medical University) ;
  • Cheng, Jun (Beijing Ditan Hospital, Peking University Health Science Center)
  • Received : 2010.09.26
  • Accepted : 2010.11.25
  • Published : 2011.01.31

Abstract

Nucleolar and coiled-body phosphoprotein 1 (NOLC1) is a phosphoprotein that transiently associates with the mature nucleolar H/ACA and C/D box small nucleolar ribonucleoproteins (snoRNPs). Several lines of evidence indicate that NOLC1 plays an important role in the synthesis of rRNA and the biosynthesis of ribosomes. In the present study, we examined the transcriptional regulation mechanisms that govern the expression of NOLC1. We first performed functional dissection of the NOLC1 promoter. We demonstrated that transcription factors NF-${\kappa}B$ and CREB could bind to the minimal NOLC1 promoter. This was demonstrated by electrophoretic mobility shift assays and chromatin immunoprecipitation. Mutagenesis and overexpression assays revealed that NF-${\kappa}B$ and CREB positively regulated the NOLC1 promoter. These findings may provide new insight into the mechanisms that regulate NOLC1 expression.

Keywords

References

  1. Meier, U. T. (1996) Comparison of the rat nucleolar protein Nopp140 with its yeast homolog SRP40. J. Biol. Chem. 271, 19376-19384.
  2. Meier, U. T. and Blobel, G. (1992) Nopp140 shuttles on tracks between nucleolus and cytoplasm. Cell 70, 127-138. https://doi.org/10.1016/0092-8674(92)90539-O
  3. Meier, U. T. and Blobel, G. (1990) A nuclear localization signal binding protein in the nucleolus. J. Cell Biol. 111, 2235-2245. https://doi.org/10.1083/jcb.111.6.2235
  4. Yang, F., Isaac, C., Wang, C., Dragon, F., Pogaicic, V., and Meier, U. T. (2000) Conserved composition of mammalian box H/ACA and box C/D small nucleolar ribonucleoprotein particles and their interaction with the common factor Nopp140. Mol. Biol. Cell 11, 567-577. https://doi.org/10.1091/mbc.11.2.567
  5. Chen, H. K., Pai, C. Y., Huang, J. Y. and Yeh, N. H. (1999) Human Nopp140, which interacts with RNA polymerase I: implications for rRNA gene transcription and nucleolar structural organization. Mol. Cell Biol. 19, 8536-8546. https://doi.org/10.1128/MCB.19.12.8536
  6. Wang, C., Query, C. C. and Meier, U. T. (2002) Immunopurified small nucleolar ribonucleo-protein particles pseudouridylate rRNA independently of their association with phosphorylated Nopp140. Mol. Cell Biol. 22, 8457-8466. https://doi.org/10.1128/MCB.22.24.8457-8466.2002
  7. Prieto, J. L. and McStay, B. (2007) Recruitment of factors linking transcription and processing of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of transcription in human cells. Genes Dev. 21, 2041-2054. https://doi.org/10.1101/gad.436707
  8. Kopp, K., Gasiorowski, J. Z., Chen, D., Gilmore, R., Norton, J. T., Wang, C., Leary, D. J., Chan, E. K., Dean, D. A. and Huang, S. (2007) Pol I transcription and pre-rRNA processing are coordinated in a transcription-dependent manner in mammalian cells. Mol. Biol. Cell 18, 394-403.
  9. Tsai, Y. T., Lin, C. I., Chen, H. K., Lee, K. M., Hsu, C. Y., Yang, S. J. and Yeh, N. H. (2008) Chromatin tethering effects of hNopp140 are involved in the spatial organization of nucleolus and the rRNA gene transcription. J. Biomed. Sci. 15, 471-486. https://doi.org/10.1007/s11373-007-9226-7
  10. Chiu, C. M., Tsay, Y. G., Chang, C. J. and Lee, S. C. (2002) Nopp140 is a mediator of the protein kinase A signaling pathway that activates the acute phase response alpha1-acid glycoprotein gene. J. Biol. Chem. 277, 39102-39111. https://doi.org/10.1074/jbc.M205915200
  11. Miau, L. H, Chang, C. J., Tsai, W. H. and Lee, S. C. (1997) Identification and characterization of a nucleolar phosphoprotein, Nopp140, as a transcription factor. Mol. Cell Biol. 17, 230-239. https://doi.org/10.1128/MCB.17.1.230
  12. Hwang, Y. C., Lu, T. Y., Huang, D. Y., Kuo, Y. S., Kao, C. F., Yeh, N. H., Wu, H. C. and Lin, C. T. (2009) NOLC1, an enhancer of nasopharyngeal carcinoma progression, is essential for TP53 to regulate MDM2 expression. Am. J. Pathol. 175, 342-354. https://doi.org/10.2353/ajpath.2009.080931
  13. Karin, M. (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441, 431-436. https://doi.org/10.1038/nature04870
  14. Pikarsky, E., Porat, R. M., Stein, I., Abramovitch, R., Amit, S., Kasem, S., Gutkovich-Pyest, E., Urieli-Shoval, S., Galun, E. and Ben-Neriah, Y. (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461-466. https://doi.org/10.1038/nature02924
  15. Mayr, B. and Montminy, M. (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599-609. https://doi.org/10.1038/35085068
  16. Servillo, G., Della Fazia, M. A. and Sassone-Corsi, P. (2002) Coupling cAMP signaling to transcription in the liver: pivotal role of CREB and CREM. Exp. Cell Res. 275, 143-154. https://doi.org/10.1006/excr.2002.5491
  17. Abramovitch, R., Tavor, E., Jacob-Hirsch, J., Zeira, E., Amariglio, N., Pappo, O., Rechavi, G., Galun, E. and Honigman, A. (2004) A pivotal role of cyclic amp-responsive element binding protein in tumor progression. Cancer Research 64, 1338-1346. https://doi.org/10.1158/0008-5472.CAN-03-2089

Cited by

  1. HIF-1-Dependent Induction of Jumonji Domain-Containing Protein (JMJD) 3 under Hypoxic Conditions vol.37, pp.1, 2014, https://doi.org/10.14348/molcells.2014.2250
  2. FAM172A modulates apoptosis and proliferation of colon cancer cells via STAT1 binding to its promoter vol.35, pp.3, 2016, https://doi.org/10.3892/or.2015.4485
  3. Methylation of nucleolar and coiled-body phosphoprotein 1 is associated with the mechanism of tumorigenesis in hepatocellular carcinoma vol.30, pp.5, 2013, https://doi.org/10.3892/or.2013.2676
  4. Linker histone H1 and protein–protein interactions vol.1859, pp.3, 2016, https://doi.org/10.1016/j.bbagrm.2015.10.004
  5. NS5ATP13 Promotes Liver Fibrogenesis Via Activation of Hepatic Stellate Cells vol.118, pp.8, 2017, https://doi.org/10.1002/jcb.25913
  6. Enhanced NOLC1 promotes cell senescence and represses hepatocellular carcinoma cell proliferation by disturbing the organization of nucleolus vol.16, pp.4, 2017, https://doi.org/10.1111/acel.12602
  7. Complex harmonic regularization with differential evolution in a memetic framework for biomarker selection vol.14, pp.2, 2019, https://doi.org/10.1371/journal.pone.0210786