참고문헌
- Daw, N. C., Billups, C. A., Rodriguez-Galinodo, C., McCarville M. B., Rao, B. N., Cain, A. M., Jenkins, J. J., Neel, M. D. and Meyer W. H. (2006) Metastatic osteosarcoma. Cancer 106, 403-412. https://doi.org/10.1002/cncr.21626
- Bielack, S. S., Kempf-Bielack, B., Delling, G., Exner, G. U., Flege, S., Helmke, K., Kotz, R., Salzer-Kuntschik, M., Werner, M., Winkelmann, W., Zoubek, A., Jurgens, H. and Winkler, K. (2002) Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J. Clin. Oncol. 20, 776-790. https://doi.org/10.1200/JCO.20.3.776
- Niswander, L. M. and Kim, S. Y. (2010) Stratifying osteosarcoma: minimizing and maximizing therapy. Curr. Oncol. Rep. 12, 266-270. https://doi.org/10.1007/s11912-010-0106-3
- Orosco, A., Fromigue, O., Bazille, C., Entz-Werle, N., Levillain, P., Marie, P. J. and Modrowski, D. (2007) Syndecan-2 affects the basal and chemotherapy-induced apoptosis in osteosarcoma. Cancer Res. 67, 3708-3715. https://doi.org/10.1158/0008-5472.CAN-06-4164
- Sihn, C. R., Lee, Y. S., Jeong, J. S., Park, K. and Kim, S. H. (2008) CANu1, a novel nucleolar protein, accumulated on centromere in response to DNA damage. Genes Cells 13, 787-796. https://doi.org/10.1111/j.1365-2443.2008.01205.x
- Jung, M. Y., Lorenz, L. and Richter, J. D. (2006) Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein. Mol. Cell Biol. 26, 4277-4287. https://doi.org/10.1128/MCB.02470-05
- Tembe, V. and Henderson, B. R. (2007) Protein trafficking in response to DNA damage. Cell Signal 19, 1113-1120. https://doi.org/10.1016/j.cellsig.2007.03.001
- Mo, Y. Y., Yu, Y., Shen, Z. and Beck, W. T. (2002) Nucleolar delocalization of human topoisomerase I in response to topotecan correlates with sumoylation of the protein. J. Biol. Chem. 277, 2958-2964. https://doi.org/10.1074/jbc.M108263200
- Daniely, Y., Dimitrova, D. D. and Borowiec, J. A. (2002) Stress-dependent nucleolin mobilization mediated by p53-nucleolin complex formation. Mol. Cell Biol. 22, 6014-6022. https://doi.org/10.1128/MCB.22.16.6014-6022.2002
- Blander, G., Zalle, N., Daniely, Y., Taplick, J., Gray, M. D. and Oren, M. (2002) DNA damage-induced translocation of the Werner helicase is regulated by acetylation. J. Biol. Chem. 277, 50934-50940. https://doi.org/10.1074/jbc.M210479200
- Condemine, W., Takahashi, Y. and Le, B. M. (2007) A nucleolar targeting signal in PML-I addresses PML to nucleolar caps in stressed or senescent cells. J. Cell Sci. 120, 3219-3227. https://doi.org/10.1242/jcs.007492
- Kurki, S., Latonen, L. and Laiho, M. (2003) Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damage-specific nuclear relocalization. J. Cell Sci. 116, 3917-3925. https://doi.org/10.1242/jcs.00714
- Alastalo, T. P., Hellesuo, M., Sandqvist, A., Hietakangas, V., Kallio, M. and Sistonen, L. (2003) Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70. J. Cell Sci. 116, 3557-3570. https://doi.org/10.1242/jcs.00671
- Yuan, X. W., Zhu, X. F., Huang, X. F., Sheng, P. Y., He, A. S., Yang, Z. B., Deng, R., Feng, G. K. and Liao, W. M. (2007) Interferon-alpha enhances sensitivity of human osteosarcoma U2OS cells to doxorubicin by p53-dependent apoptosis. Acta Pharmacol. Sin. 28, 1835-1841. https://doi.org/10.1111/j.1745-7254.2007.00662.x
- Bruland, O. S. and Pihl, A. (1997) On the current management of osteosarcoma. A critical evaluation and a proposal for a modified treatment strategy. Eur. J. Cancer 33, 1725-1731. https://doi.org/10.1016/S0959-8049(97)00252-9
- Lambert, L. A., Qiao, N., Hunt, K. K., Lambert, D. H., Mills, G. B., Meijer, L. and Keyomarsi, K. (2008) Autophagy: a novel mechanism of synergistic cytotoxicity between doxorubicin and roscovitine in a sarcoma model. Cancer Res. 68, 7966-7974. https://doi.org/10.1158/0008-5472.CAN-08-1333
- Zucchi, R. and Danesi, R. (2003) Cardiac toxicity of antineoplastic anthracyclines. Curr. Med. Chem. Anticancer Agents 3, 151-171. https://doi.org/10.2174/1568011033353434
- Schimmel, K. J., Richel, D. J., van den Brink, R. B. and Guchelaar, H. J. (2004) Cardiotoxicity of cytotoxic drugs. Cancer Treat. Rev. 30, 181-191. https://doi.org/10.1016/j.ctrv.2003.07.003
- Liu, S., Bishop, W. R. and Liu, M. (2003) Differential effects of cell cycle regulatory protein p21(WAF1/Cip1) on apoptosis and sensitivity to cancer chemotherapy. Drug Resist. Updat. 6, 183-195. https://doi.org/10.1016/S1368-7646(03)00044-X
- Agrawal, S., Agarwal, M. L., Chatterjee-Kishore, M., Stark, G. R. and Chisolm, G. M. (2002) Stat1-dependent, p53-independent expression of p21(waf1) modulates oxysterolinduced apoptosis. Mol. Cell Biol. 22, 1981-1992. https://doi.org/10.1128/MCB.22.7.1981-1992.2002
- Teraishi, F., Kadowaki, Y., Tango, Y., Kawashima, T., Umeoka, T., Kagawa, S., Tanaka, N. and Fujiwara, T. (2003) Ectopic p21sdi1 gene transfer induces retinoic acid receptor beta expression and sensitizes human cancer cells to retinoid treatment. Int. J. Cancer 103, 833-839. https://doi.org/10.1002/ijc.10892
- Lincet, H., Poulain, L., Remy, J. S., Deslandes, E., Duigou, F., Gauduchon, P. and Staedel, C. (2000) The p21 (cip1/waf1) cyclin-dependent kinase inhibitor enhances the cytotoxic effect of cisplatin in human ovarian carcinoma cells. Cancer Lett. 161, 17-26. https://doi.org/10.1016/S0304-3835(00)00586-3
- Qin, L. F. and Ng, I. O. (2001) Exogenous expression of p21(WAF1/CIP1) exerts cell growth inhibition and enhances sensitivity to cisplatin in hepatoma cells. Cancer Lett. 172, 7-15. https://doi.org/10.1016/S0304-3835(01)00701-7
- Klibanov, S. A., O'Hagan, H. M. and Ljungman, M. (2001) Accumulation of soluble and nucleolar-associated p53 proteins following cellular stress. J. Cell Sci. 114, 1867-1873.
- Zhang, S., Hemmerich, P. and Grosse, F. (2004) Nucleolar localization of the human telomeric repeat binding factor 2 (TRF2). J. Cell Sci. 117, 3935-3945. https://doi.org/10.1242/jcs.01249
- Mayer, C. and Grummt, I. (2005) Cellular stress and nucleolar function. Cell Cycle 4, 1036-1038. https://doi.org/10.4161/cc.4.8.1925
- Montanaro, L., Trere, D. and Derenzini, M. (2008) Nucleolus, ribosomes, and cancer. Am. J. Pathol. 173, 301-310. https://doi.org/10.2353/ajpath.2008.070752
- Derenzini, M., Montanaro, L. and Trere, D. (2008) What the nucleolus says to a tumour pathologist. Histopathology 54, 753-762. https://doi.org/10.1111/j.1365-2559.2008.03168.x
- Meng, L., Lin, T. and Tsai, R. Y. (2008) Nucleoplasmic mobilization of nucleostemin stabilizes MDM2 and promotes G2-M progression and cell survival. J. Cell Sci. 121, 4037-4046. https://doi.org/10.1242/jcs.037952
- Ma, H. and Pederson, T. (2008) Nucleophosmin is a binding partner of nucleostemin in human osteosarcoma cells. Mol. Biol. Cell 19, 2870-2875. https://doi.org/10.1091/mbc.E08-02-0128
- Jafarnejad, S. M., Mowla, S. J. and Matin, M. M. (2008) Knocking-down the expression of nucleostemin significantly decreases rate of proliferation of rat bone marrow stromal stem cells in an apparently p53-independent manner. Cell Prolif. 41, 28-35. https://doi.org/10.1111/j.1365-2184.2007.00505.x
- Dai, M. S., Sun, X. X. and Lu, H. (2008) Aberrant expression of nucleostemin activates p53 and induces cell cycle arrest via inhibition of MDM2. Mol. Cell Biol. 28, 4365-4376. https://doi.org/10.1128/MCB.01662-07
- Woo, L. L., Futami, K., Shimamoto, A., Furuichi, Y. and Frank, K. M. (2006) The Rothmund-Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress. Exp. Cell Res. 312, 3443-3457. https://doi.org/10.1016/j.yexcr.2006.07.023
- Otake, Y., Soundararajan, S., Sengupta, T. K., Kio, E. A., Smith, J. C., Pineda-Roman, M., Stuart, R. K., Spicer, E. K. and Fernandes, D. J. (2007) Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood 109, 3069-3075.
- Kaelin, Jr. W. G. (2005) The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer 5, 689-698. https://doi.org/10.1038/nrc1691
- Chan, D. A. and Giaccia, A. J. (2008) Targeting cancer cells by synthetic lethality: autophagy and VHL in cancer therapeutics. Cell Cycle 7, 2987-2990. https://doi.org/10.4161/cc.7.19.6776
- Bommi-Reddy, A. and Kaelin, Jr. W. G. (2010) Slaying RAS with a synthetic lethal weapon. Cell Res. 20, 119-121. https://doi.org/10.1038/cr.2010.16
- Kaelin, Jr. W. G. (2009) Synthetic lethality: a framework for the development of wiser cancer therapeutics. Genome Med. 1, 99. https://doi.org/10.1186/gm99
- Wang, Y. A., Johnson, S. K., Brown, B. L. and Dobson, P. R. (2009) Differential enhancement of the anti-cancer effect of doxorubicin by Akt inhibitors on human breast cancer cells with differing genetic backgrounds. Oncol. Rep. 21, 437-442.
피인용 문헌
- The Complexity of Human Ribosome Biogenesis Revealed by Systematic Nucleolar Screening of Pre-rRNA Processing Factors vol.51, pp.4, 2013, https://doi.org/10.1016/j.molcel.2013.08.011
- Co-administration phenoxodiol with doxorubicin synergistically inhibit the activity of sphingosine kinase-1 (SphK1), a potential oncogene of osteosarcoma, to suppress osteosarcoma cell growth bothin vivoandin vitro vol.6, pp.4, 2012, https://doi.org/10.1016/j.molonc.2012.04.002