DOI QR코드

DOI QR Code

A Study on the P Wave Arrival Time Determination Algorithm of Acoustic Emission (AE) Suitable for P Waves with Low Signal-to-Noise Ratios

낮은 신호 대 잡음비 특성을 지닌 탄성파 신호에 적합한 P파 도달시간 결정 알고리즘 연구

  • Received : 2011.09.19
  • Accepted : 2011.10.24
  • Published : 2011.10.31

Abstract

This paper introduces a new P wave arrival time determination algorithm of acoustic emission (AE) suitable to identify P waves with low signal-to-noise ratio generated in rock masses around the high-level radioactive waste disposal repositories. The algorithms adopted for this paper were amplitude threshold picker, Akaike Information Criterion (AIC), two step AIC, and Hinkley criterion. The elastic waves were generated by Pencil Lead Break test on a granite sample, then mixed with white noise to make it difficult to distinguish P wave artificially. The results obtained from amplitude threshold picker, AIC, and Hinkley criterion produced relatively large error due to the low signal-to-noise ratio. On the other hand, two step AIC algorithm provided the correct results regardless of white noise so that the accuracy of source localization was more improved and could be satisfied with the error range.

본 연구에서는 방사성폐기물처분장에서 발생하는 탄성파와 같이 낮은 신호 대 잡음비로 인하여 P파의 식별이 어려운 신호에 적합한 P파 도달시간 결정 알고리즘에 대한 연구를 수행하였다. 사용된 알고리즘은 임계 전압법, Akaike Information Criterion(AIC), Two step AIC, Hinkley criterion이며 샤프심 압절법에 의하여 생성된 탄성파 신호에 white noise를 적용하여 신호 대 잡음비를 낮추었다. 실험결과 임계전압, AIC, Hinkley criterion 알고리즘의 경우 배경잡음 수준이 증가함에 따라 P파 도달시간의 정확성은 감소하였으나 Two step AIC 알고리즘의 경우 1차적으로 결정된 P파의 도달시간 주변의 신호를 중심으로 특성함수와 AIC 알고리즘을 반복적으로 적용함에 따라 배경잡음 수준에 관계없이 정확한 결과를 나타냈다.

Keywords

References

  1. 이상은, 1999, A Study on the determination of source location and source mechanism by acoustic emission in rock materials, 공학박사학위논문, 강원대학교.
  2. 주영상 외, 2003, 음향방출시험기술과 응용, 한국원자력연구원, KAERI/AR-690/2003.
  3. Emsley, S., Olsson, O., Stenberg, H.J., Alheid and Falls, S., 1997, ZEDEXF a study of damage and disturbance from tunnel excavation by blasting and tunnel boring," Technical Report 97-30, Swedish Nuclear Fuel and Waste Management Co.
  4. Falmagne, V., Kaiser, and Martin, C.D., 1998, Microseismic monitoring and rock mass degradation," Proceedings of the 100th Canadian Institute of Mining and Metallurgy Annual General Meeting, Montreal, pp. 1-8.
  5. Grosse, C. U. and Ohtsu, M., 2008, Acoustic Emission Testing, pp. 149, Springer-Verlag Berlin Heidelberg.
  6. Grosse, C. U., 2000, Winpecker version 1.2. Instruction manual, University of Stuttgart, Stuttgart.
  7. Hensman, K., Mills, R., Pierce, S. G., Worden, L. and Eaton, M., 2010, Locating acoustic emission sources in complex structures using Gaussian Processes, Mechanical Systems and Signal Processing, 24, pp. 211-223. https://doi.org/10.1016/j.ymssp.2009.05.018
  8. Kim, J. S., Kwon, S., Sanchez, M., and Cho, G. C., 2011, "Geological storage of high level nuclear waste", KSCE Journal of Civil Engineering, Vol. 15, pp. 721-737. https://doi.org/10.1007/s12205-011-0012-8
  9. Kurz, J. H., Grosse, C. U. and Reinhardt, H. W., 2005, Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete, Ultrasonics, 43, pp. 538-546. https://doi.org/10.1016/j.ultras.2004.12.005
  10. Landis, E., Ouyang, C. and Shah, S. P., 1992, Automated "determination of first P-wave arrival and acoustic emission source location", Z Acoust. Emission, 10:$97-S103.
  11. Lokajicek, T. and Klima, K., 2006, "A first arrival identification system of acoustic emission(AE) signals by means of a high-order statistics approach", Measurement Sceience and Technology, 17, pp. 2461-2466. https://doi.org/10.1088/0957-0233/17/9/013
  12. Maeda, N., 1985, "A method for reading and checking phase times in auto-processing system of seismic wave data", J. Seismol. Soc. Jpn., 38, pp 365-379.
  13. Maji, A. and Shah, S.P., 1988, Process zone and acoustic emission measurements in concrete", Exp Mech, 28, pp.27-33. https://doi.org/10.1007/BF02328992
  14. Martin, C.D. and Read, R.S., 1996, "AECL's Mine-by experiment: a test tunnel in brittle rock", Proceedings of the Second North American Rock Mech. Symposium, Vol. 2, pp. 13-24.
  15. Olsson, O. L., and Winberg, A., 1996, Current understanding of extent and properties of the excavation disturbed zone and its dependence of excavation method, Proceedings of the International Conferenceon Deep Geological Disposal of Radioactive Waste, pp. 101-112.
  16. Plouffe, M., 1990, A local seismic survey at Creighton mine. CANMET, Energy, Mines and Resources, Canada, Division Report MRL 90-076.
  17. Reinhardt, H. W. and Grosse, C. U., 2004, Continuous monitoring of setting and hardening of mortar and concrete, Construction and Building Materials, 18, pp. 145-154. https://doi.org/10.1016/j.conbuildmat.2003.10.002
  18. Schumacher, T., Higgins, C., Glaser, S. and Grosse, C. U., 2007, Demand on Flexural Tension Steel Reinforcement Anchorage Zones in Full-Scale Bridge Bent Caps Quantified by Means of Acoustic Emission, Journal of Acoustic Emission, Vol. 25, pp. 316-323.
  19. Sedlak, P., Hirose, Y., Khan, S. A., Enoki, M. and Sikula, J., 2009, New automatic localization technique of acoustic emission signals in thin metal plates, Ultrasonics, 49, pp.254-262 (2009). https://doi.org/10.1016/j.ultras.2008.09.005
  20. Shiotani, T., Ohtsu, M. and Ikedam, K., 2001, "Detection and evaluation of AE waves due to rock deformation", Construction and Building Materials, 15, pp. 235-246. https://doi.org/10.1016/S0950-0618(00)00073-8
  21. Sleeman, R. and Eck, T. V., 1999, "Robust automatic P-phase picking: an on-line implementation in the analysis of broadband seismogram recordings", Physics of the Earth and Planetary Interiors, 113, pp. 265-275. https://doi.org/10.1016/S0031-9201(99)00007-2
  22. Young, R. P., Hutchins, D. A., McGaughey, J., Towers, J., Jansen, D. and Bostock, M., 1988, "Geotomographic imaging in the study of mining induced seismicity", Pure and Applied Geophysics, Vol. 129, pp. 571-596.
  23. Zhang, H., Thunber, C. and Rowe, C., 2003, "Automatic P-Wave Arrival Detection and Picking with Multiscale Wavelet Analysis for Single-Component Recordings", Bulletein of Seismological Society of America, Vol. 93, No. 5, pp. 1904-1912. https://doi.org/10.1785/0120020241