Enrichment of Resveratrol Content in Harvested Grape using Modulation of Cell Metabolism with UV Treatment

수확 후 포도의 UV 처리 세포대사조절에 의한 레스베라트롤 함량 강화

  • Received : 2011.10.11
  • Accepted : 2011.10.21
  • Published : 2011.10.31

Abstract

This study was performed to investigate the enrichment of resveratrol content in harvested grapes using the modulation of cell metabolism with ultra-violet (UV) irradiation. Resveratrol, a phytoalexin, is produced by stilbene synthase (STSY) from malonyl-CoA and ${\rho}$-coumaroyl-CoA. Its biosynthesis has been reported to be induced by UV and other environmental factors. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed that STSY Promoter 1 in grapes was very highly expressed by treatment with UV. Grapes were harvested and treated for post-harvest induction of STSY gene expression with UV, and then their resveratrol content was analyzed. UV treatment for 5 minutes provided the best condition for the induction of STSY gene expression. When harvested Gerbong and MBA grapes were treated with a prototype UV radiator, their resveratrol content was enriched upto 5 times compared with untreated grapes. These results suggest that a post-harvest UV treatment can be applied to enrich resveratrol content in grapes and add value to them.

과실류는 대표적인 신선식품으로 식용되고 있으며, 소득의 증가에 따라 소비량이 크게 늘어나고 있다. 특히, 포도에 함유되어 있는 레스베라트롤과 같은 건강기능 성분의 효과가 과학적으로 밝혀지고 있어 포도는 단순한 영양 자원이나 기호 식품의 측면을 넘어서는 관심을 받고 있다. 이에 따라 본 연구에서는 포도의 대표적인 건강기능 성분인 레스베라트롤이 강화된 생식용 포도를 효과적으로 생산하는 방법을 찾고자 포도 수확 후 자외선을 처리하는 방법을 적용하였다. 본 연구를 통해 도출한 연구의 결론은 다음과 같다. 포도 세포에 외부에서 적당한 스트레스를 가할 경우, 레스베라트롤 생합성 유전자가 발현되어 레스베라트롤의 함량이 증가하는 현상을 확인하였다. 이 현상은 유전자 조작이 이루어지는 과정이 아니며, 단지 포도 세포의 대사를 조절하는 현상이므로 신선식품의 건강기능성분을 강화하는 효과적인 방법으로 사용될 수 있다. 특히, 자외선 조사는 간단한 장치와 단순한 처리로 가능한 방법이기 때문에 포도 산지에서 효과적으로 활용할 수 있는 방법으로 판단된다. 실제로, 수확이후 포도에 자외선을 조사하였을 때 품종에 무관하게 약 5배까지 레스베라트롤을 증폭할 수 있는 것으로 확인되었다. 본 연구에서 제시한 방법은 유전자 조작법이 아니라 세포대사조절에 의한 기법에 해당하므로 현장 활용이 크게 기대된다.

Keywords

References

  1. Cantos E, Espin JC, Fernandez MJ, Oliva J, Tomas-Barberan FA (2003) Postharvest UV-C-irradiated grapes as a potential source for producing stilbene-enriched red wines. Agric Food Chem 51: 1208-1214. https://doi.org/10.1021/jf020939z
  2. Cantos E, Espin JC, Tomas-Barberan FA (2002) Postharvest stilbene-enrichment of red and white table grape varieties using UV-C irradiation pulses. J Agric Food Chem 50: 6322-6329. https://doi.org/10.1021/jf020562x
  3. Chabo N, Costelli P, Baccino FM, Lopez-Soriano FJ (1999) Resvertrol, a natural product present in wine, decreases tumor growth in a rat tumor model. Bioche Biophys Res Commun 254: 739-743. https://doi.org/10.1006/bbrc.1998.9916
  4. Cheong H, Ryu SY, Kim KM (1999) Anti-allergis action of resvertrol and related hydroxystilbenes. Planta Med 65: 266-268. https://doi.org/10.1055/s-2006-960773
  5. Cho YJ, Kim CJ, Kim CT, Kim TE, Bae KS, Kihl JY, Pyee J, Lee SK (2008) Effeect of UV hormesis on phenolics contents in strawberries. Food Engineering Progress 12: 143- 148.
  6. Clement MV, Hirpara JL, Chawdhury SH, Pervaiz S (1998) Chemopreventive agent resvertrol, a natural product derived from grapes, triggers CD95 signaling-dependent apoptosis in human tumor cells. Blood 92: 996-1002.
  7. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
  8. Fliegmann J, Schroder G, Schanz S, Britsch L, Schroder J (1992) Molecular analysis of chalcone and dihydropinosylvin synthase from Scots pine (Pinus sylvestris) and differential regulation of these and related enzyme activities in stressed plants. Plant Mol Biol 18; 489-503. https://doi.org/10.1007/BF00040665
  9. Fuhrman B, Lavy A, Aviram M (1995) Consumption of red wine with meals reduces the susceptibility of human plasma and low-density lipoprotein to lipid peroxidation. Am J Clin Nutr 61: 549-554.
  10. Huang C, Ma W, Goranson A, Dong Z (1999) Resveratrol suppresses cell transformation and induces apoptosis through a p53-dependent pathway. Carcinogenesis 20: 237-242. https://doi.org/10.1093/carcin/20.2.237
  11. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CWW, Fong HHS, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275: 218-220. https://doi.org/10.1126/science.275.5297.218
  12. Jeandet P, Bessis R, Gautheron B (1991) The production of resveratrol (3,5,4'-trihydroxystilbene) by grape berries in different developmental stages. Am J Enol Vitic 42: 41-46.
  13. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901-3907.
  14. Langcake P, Pryce RJ (1977) The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry 16: 1193-1196. https://doi.org/10.1016/S0031-9422(00)94358-9
  15. Lee MS, Pyee J (2004) A molecular switch for the induction of resveratrol biosynthesis in grapes. Natural Product Sci 10:1-4.
  16. Maxwell S, Cruickshank A, Thorpe G (1994) Red wine and antioxidant activity in serum. Lancet 344: 193-194.
  17. Meskin MS, Bidlack WR, Davies AJ, Omaye ST (eds.) (2002) Phytochemicals in nutrition and health. CRC Press, Boca Raton. p 43-52.
  18. Schoppner A, Kindl H (1984) Purification and properties of a stilbene synthase from induced cell suspension cultures of peanut. J Biol Chem 259: 6806-6811.
  19. Siemann EH, Creasy LL (1992) Concentration of the phytoalexin resveratrol in wine. Am J Enol Vitic 43: 49-52.