Isolation of Leuconostoc and Weissella Species Inhibiting the Growth of Lactobacillus sakei from Kimchi

김치로부터 Lactobacillus sakei 생육저해 Leuconostoc 및 Weissella 속 균주의 분리

  • Lee, Kwang-Hee (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Lee, Jong-Hoon (Department of Food Science and Biotechnology, Kyonggi University)
  • 이광희 (경기대학교 식품생물공학과) ;
  • 이종훈 (경기대학교 식품생물공학과)
  • Received : 2011.02.17
  • Accepted : 2011.04.27
  • Published : 2011.06.28

Abstract

Kimchi is a group of traditional fermented vegetable foods in Korea and known to be the product of a natural mixed-fermentation process carried out principally by lactic acid bacteria (LAB). According to microbial results based on conventional identification, Leuconostoc mesenteroides and Lactobacillus plantarum were considered to be responsible for the good taste and over-ripening of kimchi, respectively. However, with the application of phylogenetic identification, based on 16S ribosomal RNA gene similarities, a variety of Leuconostoc and Lactobacillus species not detected in the previous studies have been isolated, together with a species in the genus Weissella. Additionally, Lactobacillus sakei has been accepted as the most populous LAB in over-ripened kimchi. In this study, Leuconostoc and Weissella species inhibiting the growth of Lb. sakei were isolated from kimchi for future applications to do with kimchi fermentation. From 25 kimchi samples, 378 strains in the genera Leuconostoc and Weissella were isolated and 68 strains identified as Lc. mesenteroides, Lc. citreum, Lc. lactis, W. cibaria, W. confusa, and W. paramesenteroides exhibited growth inhibition against Lb. sakei. Most of the strains also had antagonistic activities against Lb. brevis, Lb. curvatus, Lb. paraplantarum, Lb. pentosus, and Lb. plantarum. Their antagonistic activities against Lb. sakei were more remarkable at lower temperatures of incubation.

Keywords

References

  1. Ahn, S.-J. 1988. The effect of salt and food preservatives on the growth of lactic acid bacteria isolated from Kimchi. Korean J. Food Sci. 4: 39-50.
  2. Benkerroum, N., M. Misbah, W. E. Sandine, and A. T. Elarki. 1993. Development and use of a selective medium for isolation of Leuconostoc spp. from vegetables and dairy products. Appl. Environ. Microbiol. 59: 607-609.
  3. Byun, M.-W., B.-S. Cha, J.-H. Kwon, H.-O. Cho, and W.-J. Kim. 1989. The combined effect of heat treatment and irradiation on the inactivation of major lactic acid bacteria associated with Kimchi fermentation. Korean J. Food Sci. Technol. 21: 185-191.
  4. Cha, B.-S., W.-J. Kim, M.-W. Byun, J.-H. Kwon, and H.-O. Cho. 1989. Evaluation of gamma irradiation for extending the shelf life of kimchi. Korean J. Food Sci. Technol. 21: 109-119.
  5. Cha, D.-S. and D.-M. Ha. 1996. Isolation of Leuconostoc mesenteroides subsp. mesenteroides DU-0608 with antibacterial activity from kimchi and characterization of its bacteriocin. J. Microbiol. Biotechnol. 6: 270-277.
  6. Chae, M.-H. and D.-Y. Jhon. 2006. Preparation of Kimchi containing Bifidobacterium animalis DY-64. J. Microbiol. Biotechnol. 16: 431-437.
  7. Chae, M.-H., E.-J. Park, T.-K. Oh, and D.-Y. Jhon. 2006. Preparation of kimchi containing Bifidobacterium longum BO-11. Korean J. Food Sci. Technol. 38: 232-236.
  8. Chang, J. Y., H. J. Lee, and H. C. Chang. 2007. Identification of the agent from Lactobacillus plantarum KFRI464 that enhances bacteriocin production by Leuconostoc citreum GJ7. J. Appl. Microbiol. 103: 2504-2515. https://doi.org/10.1111/j.1365-2672.2007.03543.x
  9. Chang, J. Y. and H. C. Chang. 2010. Improvements in the quality and shelf life of kimchi by fermentation with the induced bacteriocin-producing strain, Leuconostoc citreum GJ7 as a starter. J. Food Sci. 75: M103-M110. https://doi.org/10.1111/j.1750-3841.2009.01486.x
  10. Cho, Y. and H. S. Rhee. 1991. Effect of lactic acid bacteria and temperature on kimchi fermentation (II). Korean J. Soc. Food Sci. 7: 89-95.
  11. Choi, K. S., C. Sung, M. H. Kim, and T. K. Oh. 1999. Fermentation method of Kimchi using halophilic Lactobacillus sp. HL-48 and lactic acid. Korean J. Appl. Microbiol. Biotechnol. 27: 246-251.
  12. Choi, I.-K., S.-H. Jung, B.-J. Kim, S.-Y. Park, J. Kim, and H.-U. Han. 2003. Novel Leuconostoc citreum starter culture system for the fermentation of kimchi, a fermented cabbage product. Antonie van Leeuwenhoek 84: 247-253. https://doi.org/10.1023/A:1026050410724
  13. Chung, D. K. and R. Yu. 1995. Antimicrobial activity of bamboo leaves extract on microorganisms related to kimchi fermentation. Korean J. Food Sci. Technol. 27: 1035-1038.
  14. Collins, M. D., J. Samelis, J. Metaxopoulos, and S. Wallbanks. 1993. Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 75: 596-603.-
  15. Han, J.-S. and J. Kang. 2004. Retardation of kimchi fermentation by addition of glucono-o-lacton. J. Korean Soc. Food Sci. Nutr. 33: 553-559. https://doi.org/10.3746/jkfn.2004.33.3.553
  16. Hegstad, K., T. Mikalsen, T. M. Coque, G. Werner, and A. Sundsfjord. 2010. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant. Enterococcus faecalis and Enterococcus faecium. Clin. Microbiol. Infect. 16: 541-554. https://doi.org/10.1111/j.1469-0691.2010.03226.x
  17. Hong, J.-J., H.-S. Cheigh, and D.-S. Lee. 2006. Quality characteristics of canned kimchi prepared by minimal thermal processing. J. Korean Soc. Food Sci. Nutr. 35: 754-760. https://doi.org/10.3746/jkfn.2006.35.6.754
  18. Huycke, M. M., D. F. Sahm, and M. S. Gilmore. 1998. Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Eng. Infect. Dis. 4: 239- 249. https://doi.org/10.3201/eid0402.980211
  19. Jung, J.-L., M.-H. Kim, M.-J. Kim, K.-S. Jang, and S.-D. Kim. 1994. Kimchi fermentation and heat treatment under sub-atmosphere. J. East Asian Soc. Dietary Life 40: 95-104.
  20. Kandler, O. and N. Weiss. 1986. Genus Lactobacillus Beijerinck 1901, 212AL, pp. 1209-1234. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (ed.), Bergey's Manual of Systematic Bacteriology, vol. 2. Williams & Wilkins, Baltimore, USA.1-554.
  21. Kang, S.-M., W.-S. Yang, Y.-C. Kim, E.-Y. Joung, and Y.-G. Han. 1995. Strain improvement of Leuconostoc mesenteroides for kimchi fermentation and effect of starter. Korean J. Appl. Microbial Biotechnol. 23: 461-471.
  22. Kim, W.-J., K.-O. Kang, K.-H. Kyung, and J.-I. Shin. 1991. Addition of salts and their mixtures for improvement of storage stability of kimchi. Korean J. Food Sci. Technol. 23: 188-191.
  23. Kim, S.-J. and K.-H. Park. 1995. Retardation of kimchi fermentation by the extracts of Allium tuberosum and growth inhibition of related microorganisms. Korean J. Food Sci. Technol. 27: 813-818.
  24. Kim, H.-J., C.-S. Lee, Y.-C. Kim, C.-B. Yang, and S.-M. Kang. 1996. Identification of yeasts isolated from kimchi for kimchi starter. Korean J. Appl. Microbiol. Biotechnol. 24: 430-438.
  25. Kim, H.-J., S.-M. Kang, and C.-B. Yang. 1997. Effect of yeast addition as starter on fermentation of kimchi. Korean J. Food Sci. Technol. 29: 790-799.
  26. Kim, Y.-C., E.-Y. Jung, E.-H. Kim, D.-H. Jung, S.-H. Jung, D.-H. Yi, T.-J. Kwon, and S.-M. Kang. 1998. Properties of acid tolerance of acid-resistant mutant Leuconostoc mesenteroides which was improved as kimchi starter. Korean J Appl. Microbiol. Biotechnol. 26: 102-109.
  27. Kim, Y.-C., E.-Y. Jung, E.-H. Kim, D.-H. Jung, O.-S. Yi, T.- J. Kwon, and S.-M. Kang. 1998. Strain improvement of Leuconostoc paramesenteroides as a acid-resistant mutant and effect on kimchi fermentation as a starter. Korean J. Appl. Microbiol. Biotechnol. 26: 151-160..
  28. Kim, Y.-C., E.-Y. Jung, H.-J. Kim, D.-H. Jung, S.-G. Hong, T.-J. Kwon, and S.-M. Kang. 1999. Improvement of kimchi fermentation by using acid-tolerant mutant of Leuconostoc mesenteroides and aromatic yeast Saccharomyces fermentati as starters. J. Microbiol. Biotechnol. 9: 22-31.
  29. Kim, S.-J. 2001. Difficulty in Korean kimchi industry for modernization. Food Industry Nutr. 6: 34-37.
  30. Kim, D.-H. and Y. S. Hahn. 2003. Effect of addition of ethanol and organic acids on the quality of Mul-kimchi. J. East Asian Soc. Dietary Life 13: 305-312.
  31. Kim, T.-W., A.-K. Park, G.-R. Kim, J.-M. Lee, D.-K. Chung, and H-Y. Kim. 2003. Characterization of functional kimchi using Bifidobacterium lactis. Korean J. Food Sci. Biotechnol. 35: 924-927.
  32. Kim, M. and J. Chun. 2005. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103: 91- 96. https://doi.org/10.1016/j.ijfoodmicro.2004.11.030
  33. Kim, Y.-H., H.-Z. Kim, J.-Y. Kim, T.-B. Choi, and S.-M. Kang. 2005. Strain improvement of Leuconostoc mesenteroides as a acid-resistant mutant and effect on Kimchi fermentation as a starter. Korean J. Appl. Microbiol. 33: 41- 50.
  34. Kim, J. S., Y. Kim, J.-M. Park, T.-J. Kim, B. S. Kim, Y. M. Kim, H. R. Kim, and N. S. Han. 2010. Inhibition of microbial growth in cabbage-kimchi by heat treatment and nisin yucca extract. J. Korean Soc. Food Sci. Nutr. 39: 1678-1683 https://doi.org/10.3746/jkfn.2010.39.11.1678
  35. Lane, D. J. 1991. 16S-23S rRNA sequencing, pp. 115.175. In E. Stackebrandt and M. Goodfellow (ed.), Nucleic Acid Techniques in Bacterial Systematics. Wiley, New York.
  36. Lee, S.-H. and S.-D. Kim. 1988. Effect of starter on the fermentation of Kimchi. J. Korean Soc. Food Nutr. 17: 342- 347.
  37. Lee, C.-W., C.-Y. Ko, and D.-M. Ha. 1992. Microfloral changes of the lactic acid bacteria during kimchi fermentation and identification of the isolates. Korean J Appl. Microbiol. Biotechnol. 20: 102-109.
  38. Lee, J.-H. 2009. Current studies on the community of lactic acid bacteria in kimchi, a traditional Korean fermented food. Milk Sci. 58: 153-159 (in Japanese).
  39. Lee, M., K. H. Cho, and J.-H. Lee. 2010. Application of 16S rDNA PCR-RFLP analysis for the rapid identification of Weissella species. Korean J. Microbiol. Biotechnol. 38: 455- 460.
  40. Lim, C-R., H-K. Park, and H.-U. Han. 1989. Reevaluation of isolation and identification of Gram-positive bacteria in Kimchi. Korean J. Microbiol. 27: 404-414.
  41. Mheen, T.-I. and T.-W. Kwon. 1984. Effect of temperature and salt concentration on Kimchi fermentation. Korean J. Food Sci. Technol. 16: 443-450.
  42. Moon, G.-S., C.-H. Kang, Y.-R. Pyun, and W. J. Kim. 2004. Isolation, identification, and characterization of a bacteriocin- producing Enterococcus sp. from Kimchi and its application to kimchi fermentation. J. Microbiol. Biotechnol. 14: 924-931.
  43. Park, K.-J. and S. J. Woo. 1988. Effect of Na-acetate, Namalate and K-sorbate on the pH, acidity and sourness during Kimchi fermentation. Korean J. Food Sci. Technol. 20: 40- 44.
  44. Park, I. K., S. H. Kim, and S. D. Kim. 1996. Effect of organic acids addition during salting on the fermentation of Kimchi. J. East Asian Soc. Dietary Life 6: 195-204.
  45. Park, W. P., K. D. Park, and S. H. Cho. 1996. Effect of grapefruit seed extract on kimchi fermentation. Foods Biotechnol. 5: 91-93.
  46. Park, J. A., G.-Y. Heo, J. S. Lee, Y. J. Oh, B. Y. Kim, T. I. Mheen, C. K. Kim, and J. S. Ahn. 2003. Change of microbial communities in kimchi fermentation at low temperature. Korean J. Microbiol. 39: 45-50.
  47. Park, J.-G., J.-H. Kim, J.-N. Park, Y.-D. Kim, W.-G. Kim, J.- W. Lee, H.-J. Hwang, and M.-W. Byun. 2008. The effect of irradiation temperature on the quality improvement of Kimchi, Korean fermented vegetables, for its shelf stability. Radiat. Physics Chem. 77: 497-502.
  48. Shim, S. and J.-H. Lee. 2008. Evaluation of Lactic acid bacterial community in kimchi using terminal-restriction fragment length polymorphism analysis. Korean J. Microbiol. Biotechnol. 36: 247-259
  49. So, M.-H. and Y.-B. Kim. 1995. Identification of psychrotrophic lactic acid bacteria isolated from kimchi. Korean J. Appl. Microbiol. Biotechnol. 27: 495-505.
  50. So, M.-H., M.-Y. Shin, and Y.-B. Kim. 1996. Effects of psychrotrophic lactic acid bacterial starter on kimchi fermentation. Korean J. Food Sci. Technol. 28: 806-813.
  51. Sohn, K.-H. and H.-J. Lee. 1998. Effetcs of high pressure treatment on the quality and storage of kimchi. Int. J. Food Sci. Technol. 33: 359-365. https://doi.org/10.1046/j.1365-2621.1998.00138.x
  52. Um, S., W.-S. Shin, and J.-H. Lee. 2006. Real-time PCR monitoring of Lactobacillus sake, Lactobacillus plantarum, and Lactobacillus paraplantarum during kimchi fermentation. Food Sci. Biotechnol. 15: 595-598.
  53. Wee, J.-H. and K.-H. Park. 1997. Retardation of kimchi fermentation and growth inhibition of related microorganisms by tea catechins. Korean J. Food Sci. Technol. 29: 1275-1280.
  54. Yang, E. J., J. Y. Chang, H. J. Lee, J. H. Kim, D. K. Chung, J. H. Lee, and H. C. Chang. 2002. Charaterization of the antagonistic activity against Lactobacillus plantarum and induction of bacteriocin production. Korean J. Food Sci. Technol. 34: 311-318.
  55. Yang, E. J. and H. C. Chang. 2008. Antifungal activity of Lactobacillus plantarum isolated from kimchi. Korean J. Microbiol. Biotechnol. 36: 276-284.