DOI QR코드

DOI QR Code

Isolation and Characterization of Endocellulase-Free Multienzyme Complex from Newly Isolated Thermoanaerobacterium thermosaccharolyticum Strain NOI-1

  • Chimtong, Suphavadee (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Tachaapaikoon, Chakrit (Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi) ;
  • Pason, Patthra (Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi) ;
  • Kyu, Khin Lay (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Kosugi, Akihiko (Post-harvest Science and Technology Division, Japan International Research Center for Agricultural Sciences) ;
  • Mori, Yutaka (Post-harvest Science and Technology Division, Japan International Research Center for Agricultural Sciences) ;
  • Ratanakhanokchai, Khanok (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
  • Received : 2010.09.27
  • Accepted : 2010.12.17
  • Published : 2011.03.28

Abstract

An endocellulase-free multienzyme complex was produced by a thermophilic anaerobic bacterium, Thermoanaerobacterium thermosaccharolyticum strain NOI-1, when grown on xylan. The temperature and pH optima for growth were $60^{\circ}C$ and 6.0, respectively. The bacterial cells were found to adhere to insoluble xylan and Avicel. A scanning electron microscopy analysis showed the adhesion of xylan to the cells. An endocellulase-free multienzyme complex was isolated from the crude enzyme of strain NOI-1 by affinity purification on cellulose and Sephacryl S-300 gel filtration. The molecular mass of the multienzyme complex was estimated to be about 1,200 kDa. The multienzyme complex showed one protein on native PAGE, one xylanase on a native zymogram, 21 proteins on SDS-PAGE, and 5 xylanases on a SDS zymogram. The multienzyme complex consisted of xylanase, ${\beta}$-xylosidase, ${\alpha}$-L-arabinofuranosidase, ${\beta}$-glucosidase, and cellobiohydrolase. The multienzyme complex was effective in hydrolyzing xylan and corn hulls. This is the first report of an endocellulase-free multienzyme complex produced by a thermophilic anaerobic bacterium, T. thermosaccharolyticum strain NOI-1.

Keywords

References

  1. Bachmann, S. L. and A. J. McCarthy. 1991. Purification and cooperative activity of enzymes constituting the xylan-degrading system of Thermomonospora fusca. Appl. Environ. Microbiol. 57: 2121-2130.
  2. Bayer, E. A., J.-P. Belaich, Y. Shoham, and R. Lamed. 2004. The cellulosomes: Multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58: 521-554. https://doi.org/10.1146/annurev.micro.57.030502.091022
  3. Bayer, E. A. and R. Lamed. 1986. Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose. J. Bacteriol. 167: 828-836. https://doi.org/10.1128/jb.167.3.828-836.1986
  4. Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal. 2001. Microbial xylanases and their industrial applications. Appl. Microbiol. Biotechnol. 56: 326-338. https://doi.org/10.1007/s002530100704
  5. Biely, P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 3: 286-290. https://doi.org/10.1016/0167-7799(85)90004-6
  6. Cann, I. K. O., P. G. Stroot, K. R. Mackie, B. A. White, and R. I. Mackie. 2001. Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp. nov. and Thermoanaerobacterium zeae sp. nov., and emendation of the genus Thermoanaerobacterium. Int. J. Syst. Evol. Microbiol. 51: 293-302. https://doi.org/10.1099/00207713-51-2-293
  7. De Oliveira da Silva, L. A. and E. C. Carmona. 2008. Production and characterization of cellulase-free xylanase from Trichoderma inhamatum. Appl. Biochem. Biotechnol. 150: 117-125. https://doi.org/10.1007/s12010-008-8296-y
  8. Doi, R. H., A. Kosugi, K. Murashima, Y. Tamaru, and S.-O. Han. 2003. Cellulosomes from mesophilic bacteria. J. Bacteriol. 185: 5907-5914. https://doi.org/10.1128/JB.185.20.5907-5914.2003
  9. Erbeznik, M., C. R. Jones, K. A. Dawson, and H. J. Strobel. 1997. Clostridium thermocellum JW20 (ATCC 31549) is a coculture with Thermoanaerobacter ethanolicus. Appl. Environ. Microbiol. 63: 2949-2951.
  10. Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat. 125: 1-15. https://doi.org/10.1086/284325
  11. Ganghofner, D., J. Kellermann, W. L. Staudenbauer, and K. Bronnenmeier. 1998. Purification and properties of an amylopullulanase, a glucoamylase, and an $\alpha$-glucosidase in the amylolytic enzyme system of Thermoanaerobacterium thermosaccharolyticum. Biosci. Biotechnol. Biochem. 62: 302-308. https://doi.org/10.1271/bbb.62.302
  12. Hoster, F., R. Daniel, and G. Gottschalk. 2001. Isolation of a new Thermoanaerobacterium thermosaccharolyticum strain (FH1) producing a thermostable dextranase. J. Gen. Appl. Microbiol. 47: 187-192. https://doi.org/10.2323/jgam.47.187
  13. Hungate, R. E. 1969. A roll tube method for cultivation of strict anaerobes. pp. 117-132. In J. R. Norris and D. W. Ribbons (eds.). Methods in Microbiology, Vol 3B. Academic Press, Inc., New York.
  14. Irwin, D., E. D. Jung, and D. B. Wilson. 1994. Characterization and sequence of a Thermomonospora fusca xylanase. Appl. Environ. Microbiol. 60: 763-770.
  15. Kohring, S., J. Wiegel, and F. Mayer. 1990. Subunit composition and glycosidic activities of the cellulase complex from Clostridium thermocellum JW20. Appl. Environ. Microbiol. 56: 3798-3804.
  16. Koukiekolo, R., H. Y. Cho, A. Kosugi, M. Inui, H. Yukawa, and R. H. Doi. 2005. Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA. Appl. Environ. Microbiol. 71: 3504-3511. https://doi.org/10.1128/AEM.71.7.3504-3511.2005
  17. Kuhad, R. C. and A. Singh. 1993. Lignocellulose biotechnology: Current and future prospects. Crit. Rev. Biotechnol. 13: 151-172. https://doi.org/10.3109/07388559309040630
  18. Kulkarni, N., A. Shendye, and M. Rao. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411-456. https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
  19. Kumar, R. and R. P. Singh. 2001. Semi-solid-state fermentation of Eicchornia crassipes biomass as lignocellulosic biopolymer for cellulase and $\beta$-glucosidase production by cocultivation of Aspergillus niger RK3 and Trichoderma reesei MTCC164. Appl. Biochem. Biotechnol. 96: 71-82. https://doi.org/10.1385/ABAB:96:1-3:071
  20. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  21. Lee, Y.-E., S. E. Lowe, and J. G. Zeikus. 1993. Gene cloning, sequencing, and biochemical characterization of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI. Appl. Environ. Microbiol. 59: 3134-3137.
  22. Li, X. T., Z. Q. Jiang, L. T. Li, S. Q. Yang, W. Y. Feng, J. Y. Fan, and I. Kusakabe. 2005. Characterization of a cellulase-free, neutral xylanase from Thermomyces lanuginosus CBS 288.54 and its biobleaching effect on wheat straw pulp. Bioresour. Technol. 96: 1370-1379. https://doi.org/10.1016/j.biortech.2004.11.006
  23. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.
  24. Maalej, I., I. Belhaj, N. F. Masmoudi, and H. Belghith. 2009. Highly thermostable xylanase of the thermophilic fungus Talaromyces thermophilus: Purification and characterization. Appl. Biochem. Biotechnol. 158: 200-212. https://doi.org/10.1007/s12010-008-8317-x
  25. Maheshwari, R. and P. T. Kamalam. 1985. Isolation and culture of a thermophilic fungus, Melanocarpus albomyces, and factors influencing the production and activity of xylanase. J. Gen. Microbiol. 131: 3017-3027.
  26. Morris, E. J. 1988. Characteristics of the adhesion of Ruminococcus albus to cellulose. FEMS Microbiol. Lett. 51: 113-117. https://doi.org/10.1111/j.1574-6968.1988.tb02980.x
  27. Murray, R. G. E., R. N. Deutsch, and C. F. Robinow. 1994. Determinative and cytological light microscopy, pp. 21. In P. Gerhardt (ed.). Methods for General and Molecular Biology. American Society for Microbiology Washington, DC.
  28. Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375-380.
  29. O-Thong, S., P. Prasertsan, D. Karakashev, and I. Angelidaki. 2008. Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. Int. J. Hydrogen Energy 33: 1204-1214. https://doi.org/10.1016/j.ijhydene.2007.12.015
  30. Pason, P., K. L. Kyu, and K. Ratanakhanokchai. 2006. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl. Environ. Microbiol. 72: 2483-2490. https://doi.org/10.1128/AEM.72.4.2483-2490.2006
  31. Phitsuwan, P., C. Tachaapaikoon, A. Kosugi, Y. Mori, K. L. Kyu, and K. Ratanakhanokchai. 2010. A cellulolytic and xylanolytic enzyme complex from an alkalothermoanaerobacterium, Tepidimicrobium xylanilyticum BT14. J. Microbiol. Biotechnol. 20: 893-903. https://doi.org/10.4014/jmb.0911.11025
  32. Ponpium, P., K. Ratanakhanokchai, and K. L. Kyu. 2000. Isolation and properties of a cellulosome-type multienzyme complex of the thermophilic Bacteroides sp. strain P-1. Enzyme Microb. Technol. 26: 459-465. https://doi.org/10.1016/S0141-0229(99)00195-7
  33. Rani, D. S. and K. Nand. 2000. Production of thermostable cellulase-free xylanase by Clostridium absonum CFR-702. Process Biochem. 36: 355-362. https://doi.org/10.1016/S0032-9592(00)00224-7
  34. Ratanakhanokchai, K., K. L. Kyu, and M. Tanticharoen. 1999. Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl. Environ. Microbiol. 65: 694-697.
  35. Rincon, M. T., S.-Y. Ding, S. I. McCrae, J. C. Martin, V. Aurilia, R. Lamed, Y. Shoham, E. A. Bayer, and H. J. Flint. 2003. Novel organization and divergent dockerin specificities in the cellulosome system of Ruminococcus flavefaciens. J. Bacteriol. 185: 703-713. https://doi.org/10.1128/JB.185.3.703-713.2003
  36. Sakka, K., Y. Maeda, Y. Hakamada, N. Takahashi, and K. Shimada. 1991. Purification and some properties of xylanase from Clostridium stercorarium strain HX-1. Agric. Biol. Chem. 55: 247-248. https://doi.org/10.1271/bbb1961.55.247
  37. Shoham, Y., R. Lamed, and E. A. Bayer. 1999. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol. 7: 275-281. https://doi.org/10.1016/S0966-842X(99)01533-4
  38. Sonne-Hansen, J., I. M. Mathrani, and B. K. Ahring. 1993. Xylanolytic anaerobic thermophiles from Icelandic hot-springs. Appl. Microbiol. Biotechnol. 38: 537-541.
  39. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  40. van Dyk, J. S., M. Sakka, K. Sakka, and B. I. Pletschke. 2009. The cellulolytic and hemi-cellulolytic system of Bacillus licheniformis SVD1 and the evidence for production of a large multi-enzyme complex. Enzyme Microb. Technol. 45: 372-378. https://doi.org/10.1016/j.enzmictec.2009.06.016
  41. Waeonukul, R., K. L. Kyu, K. Sakka, and K. Ratanakhanokchai. 2009. Isolation and characterization of a multienzyme complex (cellulosome) of the Paenibacillus curdlanolyticus B-6 grown on Avicel under aerobic conditions. J. Biosci. Bioeng. 107: 610-614. https://doi.org/10.1016/j.jbiosc.2009.01.010
  42. Zhang, T., H. Liu, and H. H. P. Fang. 2003. Biohydrogen production from starch in wastewater under thermophilic condition. J. Environ. Manage. 69: 149-156. https://doi.org/10.1016/S0301-4797(03)00141-5

Cited by

  1. Efficient saccharification of ammonia soaked rice straw by combination of Clostridium thermocellum cellulosome and Thermoanaerobacter brockii β-glucosidase vol.107, pp.None, 2012, https://doi.org/10.1016/j.biortech.2011.12.126
  2. Production, Purification, and Characterization of a Cellulase-Free Thermostable Endo-xylanase from Thermoanaerobacterium thermosaccharolyticum DSM 571 vol.174, pp.7, 2011, https://doi.org/10.1007/s12010-014-1135-4
  3. Characterization of Glycerol Dehydrogenase from Thermoanaerobacterium thermosaccharolyticum DSM 571 and GGG Motif Identification vol.26, pp.6, 2011, https://doi.org/10.4014/jmb.1512.12051
  4. Coupled Microbiological-Isotopic Approach for Studying Hydrodynamics in Deep Reservoirs: The Case of the Val d’Agri Oilfield (Southern Italy) vol.12, pp.5, 2011, https://doi.org/10.3390/w12051483
  5. Isolation and characterization of thermophilic cellulose and hemicellulose degrading bacterium, Thermoanaerobacterium sp. R63 from tropical dry deciduous forest soil vol.15, pp.7, 2020, https://doi.org/10.1371/journal.pone.0236518
  6. Metaproteomic analysis of enzymatic composition in Baobaoqu fermentation starter for Wuliangye baijiu vol.56, pp.8, 2011, https://doi.org/10.1111/ijfs.15047
  7. Biomass Valorization: Sustainable Methods for the Production of Hemicellulolytic Catalysts from Thermoanaerobacterium thermostercoris strain BUFF vol.10, pp.11, 2021, https://doi.org/10.3390/resources10110115