DOI QR코드

DOI QR Code

Antiviral Activity of Methylelaiophylin, an ${\alpha}$-Glucosidase Inhibitor

  • Lee, Do-Seung (Faculty of Biotechnology, College of Applied Life Science, Jeju National University) ;
  • Woo, Jin-Kyu (Faculty of Biotechnology, College of Applied Life Science, Jeju National University) ;
  • Kim, Dong-Hern (Bio-Crop Division, Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Min-Young (Faculty of Biotechnology, College of Applied Life Science, Jeju National University) ;
  • Cho, So-Mi K. (Faculty of Biotechnology, College of Applied Life Science, Jeju National University) ;
  • Kim, Jae-Hoon (Faculty of Biotechnology, College of Applied Life Science, Jeju National University) ;
  • Park, Se-Pill (Faculty of Biotechnology, College of Applied Life Science, Jeju National University) ;
  • Lee, Hyo-Yeon (Faculty of Biotechnology, College of Applied Life Science, Jeju National University) ;
  • Riu, Key Zung (Faculty of Biotechnology, College of Applied Life Science, Jeju National University) ;
  • Lee, Dong-Sun (Faculty of Biotechnology, College of Applied Life Science, Jeju National University)
  • Received : 2010.11.02
  • Accepted : 2010.12.23
  • Published : 2011.03.28

Abstract

Methylelaiophylin isolated from Streptomyces melanosporofaciens was selected as an ${\alpha}$-glucosidase inhibitor with an $IC_{50}$ value of 10 ${\mu}M$. It showed mixed-type inhibition of ${\alpha}$-glucosidase with a $K_i$ value of 5.94 ${\mu}M$. In addition, methylelaiophylin inhibited the intracellular trafficking of hemagglutinin-neuramidase (HN), a glycoprotein of Newcastle disease virus (NDV), in baby hamster kidney (BHK) cells. Methylelaiophylin inhibited the cell surface expression of NDV-HN glycoprotein without significantly affecting HN glycoprotein synthesis in NDV-infected BHK cells.

Keywords

References

  1. Arcamone, F. M., C. Bertazzoli, M. Ghione, and T. Scotti. 1959. Melanosporin and elaiophylin, new antibiotics from Streptomyces melanosporus (sive melanosporofaciens) n. sp. G. Microbiol. 7: 207-216.
  2. Asano, N. 2003. Glycosidase inhibitors: Update and perspectives on practical use. Glycobiology 13: 93-104. https://doi.org/10.1093/glycob/cwg090
  3. De Melo, E. B., A. da Silveira Gomes, and I. Carvalho. 2006. $\alpha$- and $\beta$-Glucosidase inhibitors: Chemical structure and biological activity. Tetrahedron 62: 10277-10302. https://doi.org/10.1016/j.tet.2006.08.055
  4. Dennis, J. W., S. Laferte, C. Waghorne, M. L. Breitman, and R. S. Kerbel. 1987. Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236: 582-585. https://doi.org/10.1126/science.2953071
  5. Dettenhofer, M. and X. F. Yu. 2001. Characterization of the biosynthesis of human immunodeficiency virus type 1 Env from infected T-cells and the effects of glucose trimming of Env on virion infectivity. J. Biol. Chem. 276: 5985-5991. https://doi.org/10.1074/jbc.M008933200
  6. Dwek, R. A. 1995. Glycobiology: Towards understanding the function of sugars. Biochem. Soc. Trans. 23: 1-25. https://doi.org/10.1042/bst0230001
  7. Einfeld, D. 1996. Maturation and assembly of retroviral glycoproteins. Curr. Top. Microbiol. 214: 133-176.
  8. Fang, A., G. K. Wong, and A. L. Demain. 2000. Enhancement of the antifungal activity of rapamycin by the coproduced elaiophylin and nigericin. J. Antibiot. 53: 158-162. https://doi.org/10.7164/antibiotics.53.158
  9. Fischer, P. B., M. Collin, G. B. Karlsson, W. James, T. D. Butters, S. J. Davis, S. Gordon, R. A. Dwek, and F. M. Platt. 1995. The $\alpha$-glucosidase inhibitor N-buthyldeoxynojirimycin inhibits human immunodeficiency virus entry at the level of post-CD4 binding. J. Virol. 69: 5791-5797.
  10. Grigoriev, P. A., R. Schlegel, and U. Grafe. 2001. Cation selective ion channels formed by macrodiolide antibiotic elaiophylin in lipid bilayer membranes. Bioelectrochemistry 54: 11-15. https://doi.org/10.1016/S0302-4598(01)00102-7
  11. Gruters, R. A., J. J. Neefjes, M. Tersmette, R. E. de Goede, A. Tulp, H. G. Huisman, F. Miedema, and H. L. Ploegh. 1987. Interference with HIV-induced syncytium formation and viral infectivity by inhibitors of trimming glucosidase. Nature 330: 74-77. https://doi.org/10.1038/330074a0
  12. Hiebsch, R. R. and B. W. Wattenberg. 1992. Vesicle fusion in protein transport through the golgi in vitro does not involve long-lived prefusion intermediates. A reassessment of the kinetics of transport as measured by glycosylation. Biochemistry 31: 6111-6118. https://doi.org/10.1021/bi00141a022
  13. Jacob, G. S. 1995. Glycosylation inhibitors in biology and medicine. Curr. Opin. Struct. Biol. 5: 605-611. https://doi.org/10.1016/0959-440X(95)80051-4
  14. Johnson, V. A., B. D. Walker, M. A. Barlow, T. J. Paradis, T. C. Chou, and M. S. Hirsch. 1989. Synergistic inhibition of human immunodeficiency virus type 1 and type 2 replication in vitro by castanospermine and 3'-azido-3'-deoxythymidine. Antimicrob. Agents Chemother. 33: 53-57. https://doi.org/10.1128/AAC.33.1.53
  15. Lad, V. J. and A. K. Gupta. 2002. Inhibition of Japanese encephalitis virus maturation and transport in PS cells to cell surface by brefeldin A. Acta Virol. 46: 187-190.
  16. Lee, D. S. and S. H. Lee. 2001. Genistein, a soy isoflavone, is a potent $\alpha$-glucosidase inhibitor. FEBS Lett. 501: 84-86. https://doi.org/10.1016/S0014-5793(01)02631-X
  17. Lee, D. S., S. H. Lee, J. H. Woo, J. M. Lee, Y. B. Seu, and S. D. Hong. 1997. Antibacterial activities of methylelaiophylin. Korean J. Life Sci. 7: 180-185.
  18. Munniz, M. and H. Riezman. 2000. Intracellular transport of GPI-anchored proteins. EMBO J. 19: 10-15. https://doi.org/10.1093/emboj/19.1.10
  19. Muroi, M., A. Takasu, M. Yamasaki, and A. Takatsuki. 1993. Folimycin (concanamycin A), an inhibitor of V-type H(+)-ATPase, blocks cell-surface expression of virus-envelope glycoproteins. Biochem. Biophys. Res. Commun. 193: 999-1005. https://doi.org/10.1006/bbrc.1993.1724
  20. Nakakoshi, M., N. Kimura, M. Yoshihama, and M. Uramoto. 1999. SNA-4606-1, a new member of elaiophylins with enzyme inhibition activity against testosterone 5 $\alpha$-reductase. J. Antibiot. 52: 175-177. https://doi.org/10.7164/antibiotics.52.175
  21. Nakamura, M., Y. Kono, and A. Akatsuki. 2003. Mepanipyrim, a novel inhibitor of pharmacologically induced Golgi dispersion. Biosci. Biotechnol. Biochem. 67: 139-150. https://doi.org/10.1271/bbb.67.139
  22. Ohtsuka, S., S. Ueno, C. Yoshikumi, F. Hirose, Y. Ohmura, T. Wada, T. Fujii, and E. Takahashi. 1973. Polysaccharides having an anticarcinogenic effect and a method of producing them from species of Basidiomycetes. UK Patent 1331513, 26 September.
  23. Olkkonen, V. M. and E. Ikonen. 2006. When intracellular logistics fails - genetic defects in membrane trafficking. J. Cell Sci. 119: 5031-5045. https://doi.org/10.1242/jcs.03303
  24. Papandreou, M. J., R. Barbouche, R. Guieu, M. P. Kieny, and E. Fenouillet. 2002. The $\alpha$-glucosidase inhibitor 1-deoxynojirimycin blocks human immunodeficiency virus envelope glycoprotein-mediated membrane fusion at the CXCR4 binding step. Mol. Pharmacol. 61: 186-193. https://doi.org/10.1124/mol.61.1.186
  25. Quinn, T. C. 2008. HIV epidemiology and the effects of antiviral therapy on long-term consequences. AIDS 22(Suppl 3): 7-12. https://doi.org/10.1097/01.aids.0000327510.68503.e8
  26. Sagiv, Y., A. Legesse-Miller, A. Porat, and Z. Elazar. 2000. GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J. 19: 1494-1504. https://doi.org/10.1093/emboj/19.7.1494
  27. Segel, I. H. 1975. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme System, pp. 100-202. Wiley, New York.
  28. Tsujii, E., M. Muroi, N. Shiragami, and A. Takatsuki. 1996. Nectrisine is a potent inhibitor of $\alpha$-glucosidases, demonstrating activities similarly at enzyme and cellular levels. Biochem. Biophys. Res. Commun. 220: 459-466. https://doi.org/10.1006/bbrc.1996.0427

Cited by

  1. Antiviral therapies targeting host ER alpha-glucosidases: Current status and future directions vol.99, pp.3, 2011, https://doi.org/10.1016/j.antiviral.2013.06.011
  2. Novel synthesis of dihydropyrimidines for α-glucosidase inhibition to treat type 2 diabetes: In vitro biological evaluation and in silico docking vol.54, pp.None, 2011, https://doi.org/10.1016/j.bioorg.2014.05.003
  3. Characterization of the biochemical, physiological, and medicinal properties of Streptomyces hygroscopicus ACTMS-9H isolated from the Amazon (Brazil) vol.101, pp.2, 2011, https://doi.org/10.1007/s00253-016-7886-9
  4. Characterization of the biochemical, physiological, and medicinal properties of Streptomyces hygroscopicus ACTMS-9H isolated from the Amazon (Brazil) vol.101, pp.2, 2011, https://doi.org/10.1007/s00253-016-7886-9
  5. Antiangiogenic Potential of Microbial Metabolite Elaiophylin for Targeting Tumor Angiogenesis vol.23, pp.3, 2011, https://doi.org/10.3390/molecules23030563
  6. Synthesis, Molecular Modeling and Biological Evaluation of 5-arylidene-N,N-diethylthiobarbiturates as Potential α-glucosidase Inhibitors vol.15, pp.2, 2011, https://doi.org/10.2174/1573406414666180912114814
  7. Efomycins K and L From a Termite-Associated Streptomyces sp. M56 and Their Putative Biosynthetic Origin vol.10, pp.None, 2011, https://doi.org/10.3389/fmicb.2019.01739
  8. Natural Occurrence, Bioactivity and Biosynthesis of Elaiophylin Analogues vol.24, pp.21, 2011, https://doi.org/10.3390/molecules24213840
  9. An efficient and targeted synthetic approach towards new highly substituted 6-amino-pyrazolo[1,5- a ]pyrimidines with α -glucosidase inhibitory activity vol.10, pp.None, 2011, https://doi.org/10.1038/s41598-020-59079-z