DOI QR코드

DOI QR Code

Effects of Field-Grown Genetically Modified Zoysia Grass on Bacterial Community Structure

  • Lee, Yong-Eok (Division of Bio Science, Dongguk University) ;
  • Yang, Sang-Hwan (Division of Bio Science, Dongguk University) ;
  • Bae, Tae-Woong (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Kang, Hong-Gyu (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Lim, Pyung-Ok (Faculty of Science Education, Jeju National University) ;
  • Lee, Hyo-Yeon (Faculty of Biotechnology, Jeju National University)
  • Received : 2010.10.04
  • Accepted : 2011.01.12
  • Published : 2011.04.28

Abstract

Herbicide-tolerant Zoysia grass has been previously developed through Agrobacterium-mediated transformation. We investigated the effects of genetically modified (GM) Zoysia grass and the associated herbicide application on bacterial community structure by using culture-independent approaches. To assess the possible horizontal gene transfer (HGT) of transgenic DNA to soil microorganisms, total soil DNAs were amplified by PCR with two primer sets for the bar and hpt genes, which were introduced into the GM Zoysia grass by a callus-type transformation. The transgenic genes were not detected from the total genomic DNAs extracted from 1.5 g of each rhizosphere soils of GM and non-GM Zoysia grasses. The structures and diversities of the bacterial communities in rhizosphere soils of GM and non-GM Zoysia grasses were investigated by constructing 16S rDNA clone libraries. Classifier, provided in the RDP II, assigned 100 clones in the 16S rRNA gene sequences library into 11 bacterial phyla. The most abundant phyla in both clone libraries were Acidobacteria and Proteobacteria. The bacterial diversity of the GM clone library was lower than that of the non- GM library. The former contained four phyla, whereas the latter had seven phyla. Phylogenetic trees were constructed to confirm these results. Phylogenetic analyses of the two clone libraries revealed considerable difference from each other. The significance of difference between clone libraries was examined with LIBSHUFF statistics. LIBSHUFF analysis revealed that the two clone libraries differed significantly (P<0.025), suggesting alterations in the composition of the microbial community associated with GM Zoysia grass.

Keywords

References

  1. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment tool. J. Mol. Biol. 215: 403-410.
  2. Amann, R. I., W. Ludwig, and K.-H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169.
  3. Angle, J. S. 1994. Release of transgenic plants: Biodiversity and population-level considerations. Mol. Ecol. 3: 45-50.
  4. Aoshima, H., A. Kimura, A. Shibutani, C. Okada, Y. Matsumiya, and M. Kubo. 2006. Evaluation of soil bacterial biomass using environmental DNA extracted by slow-stirring method. Appl. Microbiol. Biotechnol. 71: 875-880. https://doi.org/10.1007/s00253-005-0245-x
  5. Bae, T. W., E. Vankildorj, S. Y. Song, S. Nishiguchi, I. J. Song, T. Chandrasekhar, et al. 2008. Environmental risk assessment of genetically engineered herbicide-tolerant Zoysia japonica. J. Environ. Qual. 37: 207-218. https://doi.org/10.2134/jeq2007.0128
  6. Bae, T.-W., H.-Y. Lee, K. H. Ryu, T. H. Lee, P. O. Lim, P.-Y. Yoon, et al. 2007. Evaluation of horizontal gene transfer from genetically modified zoysia grass to the indigenous microorganisms in isolated GMO field. Kor. J. Plant Biotechnol. 34: 75-80. https://doi.org/10.5010/JPB.2007.34.1.075
  7. Barns, S. M., S. L. Takala, and C. R. Kuske. 1999. Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl. Environ. Microbiol. 65: 1731-1737.
  8. Bruinsma, M., G. A. Kowalchuk, and J. A. van Veen. 2003. Effects of genetically modified plants on microbial communities and processes in soil. Biol. Fertil. Soils 37: 329-337.
  9. Cole, J. R., B. Chai, R. J. Farris, Q. Wang, S. A. Kulam, D. M. McGarrell, G. M. Garrity, and J. M. Tiedje. 2005. The Ribosomal Database project (RDP-II): Sequences and tools for highthroughput rRNA analysis. Nucleic Acids Res. 33: D294-D296.
  10. De Vries, J. and W. Wackernagel. 1998. Detection of nptII (kanamycin resistance) genes in genomes of transgenic plants by marker-rescue transformation. Mol. Gen. Genet. 257: 606-613. https://doi.org/10.1007/s004380050688
  11. Donegan, K. K., R. J. Seidler, J. D. Doyle, L. A. Porteous, G. Digiovanni, F. Widmer, and L. S. Watrud. 1999. A field study with genetically engineered alfalfa inoculated with recombinant Sinorhizobium meliloti: Effects on the soil ecosystem. J. Appl. Ecol. 36: 920-936. https://doi.org/10.1046/j.1365-2664.1999.00448.x
  12. Dunfield, K. E. and J. J. Germida. 2001. Diversity of bacterial communities in the rhizosphere and root interior of field-grown genetically modified Brassica napus. FEMS Microbiol. Ecol. 38: 1-9. https://doi.org/10.1111/j.1574-6941.2001.tb00876.x
  13. Faber, M. J., G. R. Stephenson, and D. G. Thompson. 1997. Persistence and leachability of glufosinate-ammonium in a northern Ontario terrestrial environment. J. Agric. Food Chem. 45: 3672-3676. https://doi.org/10.1021/jf970045s
  14. Felsenstein, J. 1993. PHYLIP (phylogenetic inference package) version 3.57c. University of Washington, Seattle, USA.
  15. Gebhard, F. and K. Smalla. 1999. Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiol. Ecol. 28: 261-272. https://doi.org/10.1111/j.1574-6941.1999.tb00581.x
  16. Gyamfi, S., U. Pfeifer, M. Stierschneider, and A. Sessitsch. 2002. Effects of transgenic glufosinate-tolerant oilseed rape (Brassica napus) and the associated herbicide application on eubacterial and Pseudomonas communities in the rhizosphere. FEMS Microbiol. Ecol. 41: 181-190. https://doi.org/10.1111/j.1574-6941.2002.tb00979.x
  17. Hails, R. S. 2002. Assessing the risks associated with new agricultural practices. Nature 418: 685-688. https://doi.org/10.1038/nature01016
  18. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 95-98.
  19. Huber, T., G. Faulkner, and P. Hugenholtz. 2004. Bellerophon: A program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 2317-2319. https://doi.org/10.1093/bioinformatics/bth226
  20. Hugenholtz, P., B. M. Goebel, and N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765-4774.
  21. Janssen, P. H. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72: 1719-1728. https://doi.org/10.1128/AEM.72.3.1719-1728.2006
  22. Johnson, J. L. 1994. Similarity analysis of rRNAs, pp. 683- 700. In P. R. G. Gerhardt, E. Murray, W. A. Wood, and N. R. Krieg (eds.). Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC.
  23. Lakay, F. M., A. Botha, and B. A. Prior. 2007. Comparative analysis of environmental DNA extraction and purification methods from different humic acid-rich soils. J. Appl. Microbiol. 102: 265-273. https://doi.org/10.1111/j.1365-2672.2006.03052.x
  24. Lottmann, J. and G. Berg. 2001. Phenotypic and genotypic characterization of antagonistic bacteria associated with roots of transgenic and non-transgenic potato plants. Microbiol. Res. 156: 75-82. https://doi.org/10.1078/0944-5013-00086
  25. Neefs, J.-M., Y. Van de Peer, L. Hendriks, and R. De Wachter. 1990. Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res. 18: 2237-2317. https://doi.org/10.1093/nar/18.suppl.2237
  26. Nielsen, K. M., F. Gebhard, K. Smalla, A. M. Bones, and J. D. van Elsas. 1997. Evaluation of possible horizontal gene transfer from transgenic plants to the soil bacterium Acinetobacter calcoaceticus BD413. Theor. Appl. Genet. 95: 815-821. https://doi.org/10.1007/s001220050630
  27. Sait, M., P. Hugenholtz, and P. H. Janssen. 2002. Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ. Microbiol. 4: 654-666. https://doi.org/10.1046/j.1462-2920.2002.00352.x
  28. Saxena, D. and G. Stotzky. 2001. Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil. Soil Biol. Biochem. 33: 1225-1230. https://doi.org/10.1016/S0038-0717(01)00027-X
  29. Schlüter, K., J. Fütterer, and I. Potrykus. 1995. "Horizontal" gene transfer from a transgenic potato line to a bacterial pathogen (Erwinia chrysanthemi) occurs - if at all - at an extremely low frequency. Nature Biotechnol. 13: 1094-1098. https://doi.org/10.1038/nbt1095-1094
  30. Schmalenberger, A. and C. C. Tebbe. 2002. Bacterial community composition in the rhizosphere of a transgenic, herbicide-resistant maize (Zea mays) and comparison to its non-transgenic cultivar Bosphore. FEMS Microbiol. Ecol. 40: 29-37. https://doi.org/10.1111/j.1574-6941.2002.tb00933.x
  31. Siciliano, S. D. and J. J. Germida. 1999. Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cv. Quest, compared to the non-transgenic B. napus cv. Excel and B. rapa cv. Parkland. FEMS Microbiol. Ecol. 29: 263-272. https://doi.org/10.1111/j.1574-6941.1999.tb00617.x
  32. Singleton, D. R., M. A. Furlong, S. L. Rathbun, and W. B. Whitman. 2001. Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl. Environ. Microbiol. 67: 4374-4376. https://doi.org/10.1128/AEM.67.9.4374-4376.2001
  33. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  34. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  35. Toyama, K., C.-H. Bae, J.-G. Kang, Y.-P. Lim, T. Adachi, K.-Z. Riu, P.-S. Song, and H.-Y. Lee. 2003. Production of herbicidetolerant zoysia grass by Agrobacterium-mediated transformation. Mol. Cells 16: 19-27.
  36. Von Wintzingerode, F., U. B. Göbel, and E. Stackebrandt. 1997. Determination of microbial diversity in environmental samples: Pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21: 213-229. https://doi.org/10.1111/j.1574-6976.1997.tb00351.x
  37. Wang, G. C.-Y. and Y. Wang. 1996. The frequency of chimeric molecules as a consequence of PCR co-amplification of 16S rRNA genes from different bacterial species. Microbiology 142: 1107-1114. https://doi.org/10.1099/13500872-142-5-1107
  38. Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261-5267. https://doi.org/10.1128/AEM.00062-07
  39. Wolfenbarger, L. L. and P. R. Phifer. 2000. The ecological risks and benefits of genetically engineered plants. Science 290: 2088-2093. https://doi.org/10.1126/science.290.5499.2088
  40. Yeates, C., M. R. Gillings, A. D. Davison, N. Altavilla, and D. A. Veal. 1998. Methods for microbial DNA extraction from soil for PCR amplification. Biol. Proced. Online 1: 40-47. https://doi.org/10.1251/bpo6
  41. Zhou, J., M. A. Bruns, and J. M. Tiedje. 1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62: 316-322.

Cited by

  1. Effect of Genetically Modified Poplars on Soil Microbial Communities during the Phytoremediation of Waste Mine Tailings vol.77, pp.21, 2011, https://doi.org/10.1128/aem.06102-11
  2. 제초제저항성 들잔디(Zoysia japonica Steud.) 이벤트 Jeju Green21의 환경위해성평가 vol.38, pp.2, 2011, https://doi.org/10.5010/jpb.2011.38.2.105
  3. Effect of salinity tolerant PDH45 transgenic rice on physicochemical properties, enzymatic activities and microbial communities of rhizosphere soils vol.8, pp.8, 2011, https://doi.org/10.4161/psb.24950
  4. Secondary plant metabolites and root exudates: guiding tools for polychlorinated biphenyl biodegradation vol.12, pp.2, 2015, https://doi.org/10.1007/s13762-014-0515-1
  5. Effects of Betaine Aldehyde Dehydrogenase-Transgenic Soybean on Phosphatase Activities and Rhizospheric Bacterial Community of the Saline-Alkali Soil vol.2016, pp.None, 2011, https://doi.org/10.1155/2016/4904087
  6. Effects of an EPSPS -transgenic soybean line ZUTS31 on root-associated bacterial communities during field growth vol.13, pp.2, 2011, https://doi.org/10.1371/journal.pone.0192008
  7. Identification of Major Rhizobacterial Taxa Affected by a Glyphosate-Tolerant Soybean Line via Shotgun Metagenomic Approach vol.9, pp.4, 2011, https://doi.org/10.3390/genes9040214
  8. National Program for Developing Biotech Crops in Korea vol.6, pp.3, 2011, https://doi.org/10.9787/pbb.2018.6.3.171
  9. Enrichments/Derichments of Root-Associated Bacteria Related to Plant Growth and Nutrition Caused by the Growth of an EPSPS-Transgenic Maize Line in the Field vol.10, pp.None, 2011, https://doi.org/10.3389/fmicb.2019.01335
  10. Highly diverse root endophyte bacterial community is driven by growth substrate and is plant genotype-independent in common bean ( Phaseolus vulgaris L.) vol.8, pp.None, 2011, https://doi.org/10.7717/peerj.9423