DOI QR코드

DOI QR Code

Endophytic Fungi as a Source of Biofuel Precursors

  • Santos-Fo, Florisvaldo C. (Departamento de Quimica, Universidade Federal de Sao Carlos) ;
  • Fill, Taicia Pacheco (Departamento de Quimica, Universidade Federal de Sao Carlos) ;
  • Nakamura, Joanita (Centro de Caracterizacao e Desenvolvimento de Materiais, Departamento de Engenharia de Materiais, Universidade Federal de Sao Carlos) ;
  • Monteiro, Marcos Roberto (Centro de Caracterizacao e Desenvolvimento de Materiais, Departamento de Engenharia de Materiais, Universidade Federal de Sao Carlos) ;
  • Rodrigues-Fo, Edson (Departamento de Quimica, Universidade Federal de Sao Carlos)
  • Received : 2010.10.25
  • Accepted : 2011.05.08
  • Published : 2011.07.28

Abstract

Endophytic fungi, isolated from a number of different species of tropical plants, were investigated for lipid biodiesel precursor production. The extracts produced from liquid cultures of these fungi were subjected to acidcatalyzed transesterification reactions with methanol producing methyl esters and then analyzed through chromatographic (GC-FID) and spectrometric techniques (MS, NMR $^1H$). The European Standard Method, EN 14103, was used for the quantification of methyl esters extracted from the fungi of the species and genera studied. Xylariaceous fungi exhibited the highest concentrations of methyl esters (91%), and hence may be a promising source for biofuel.

Keywords

References

  1. Amaral, L. S. and E. Rodrigues-Filho. 2010. Two novel eremophilane sesquiterpenes from an endophytic Xylariaceous fungus isolated from leaves of Cupressus lusitanica. J. Braz. Chem. Soc. 21: 1446-1450. https://doi.org/10.1590/S0103-50532010000800006
  2. Chen, J., H. Ferris, K. M. Scow, and K. J. Grahan. 2001. Fatty acid composition and dynamics of selected fungal-feeding nematodes and fungi. Comp. Biochem. Physiol. Biochem. Molec. Biol. 130: 135-144. https://doi.org/10.1016/S1096-4959(01)00414-6
  3. Chisti, Y. 2007. Biodiesel from microalgae. Biotech. Adv. 25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  4. Durrett, T. P., C. Benning, and J. Ohlrogge. 2008. Plant triacylglycerols as feedstocks for the production of biofuels. Plant J. 54: 593-607. https://doi.org/10.1111/j.1365-313X.2008.03442.x
  5. European Committee for Standardization. 2003. EN14103: Fatty acid methyl esters (FAME) - Determination of ester and linolenic acid methyl esters contents. Brussels.
  6. Fakas, S., S. Papanikolaou, M. Galiotou-Panauotou, M. Komaitis, and G. Aggelis. 2008. Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in Cunninghamella echinulata. J. Appl. Microbiol. 105: 1062- 1070. https://doi.org/10.1111/j.1365-2672.2008.03839.x
  7. Fakas, S., S. Papanikolaou, A. Batsos, M. Galiotou-Panayotou, A. Mallouchos, and G. Aggelis. 2009. Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33: 573-580. https://doi.org/10.1016/j.biombioe.2008.09.006
  8. Fill, T. P., R. M. G. dos Santos, A. Barison, E. Rodrigues Filho, and A. Q. L. Souza. 2009. Co-production of bisphenylpropanoid amides and meroterpenes by an endophytic penicillium brasilianum found in the root bark of Melia azedarach. Z. Naturforsch C 64: 355-360.
  9. Fill, T. P., B. F. Silva, and E. Rodrigues-Filho. 2010. Biosynthesis of phenylpropanoid amides by an endophytic Penicillium brasilianum found in root bark of Melia azedarach. J. Microbiol. Biotechnol. 20: 622-629.
  10. Formo, M. 1954. Ester reactions of fatty materials. J. Am. Oil Chem. Soc. 31: 548-559. https://doi.org/10.1007/BF02638571
  11. Galembeck, F., C. A. S. Barbosa, and R. A. de Souza. 2009. Aproveitamento sustentavel de biomassa e de recursos naturais na inovacao quimica. Quim. Nova 32: 571-581. https://doi.org/10.1590/S0100-40422009000300003
  12. Geris dos Santos, R. M. and E. Rodrigues-Fo. 2002. Meroterpenes from Penicillium sp. found in association with Melia azedarach. Phytochemistry 61: 907-912. https://doi.org/10.1016/S0031-9422(02)00379-5
  13. Goldemberg, J. 2009. Biomassa e energia. Quim. Nova 32: 582-587. https://doi.org/10.1590/S0100-40422009000300004
  14. Gouda, M., S. H. Omar, and L. M. Aouad. 2008. Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J. Microbiol. Biotechnol. 24: 1703-1711. https://doi.org/10.1007/s11274-008-9664-z
  15. Helwani, Z., M. R. Othman, N. Aziz, W. J. N. Fernando, and J. Kim. 2009. Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Process. Technol. 90: 1502-1514. https://doi.org/10.1016/j.fuproc.2009.07.016
  16. Illman, A. M., A. H. Scragg, and S. W. Shales. 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microbial Technol. 27: 631-635. https://doi.org/10.1016/S0141-0229(00)00266-0
  17. Knothe, G. 2006. Analyzing biodiesel: Standards and other methods. J. Am. Oil Chem. Soc. 83: 823-833. https://doi.org/10.1007/s11746-006-5033-y
  18. Li, Q., W. Du, and D. Liu. 2008. Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biotechnol. 80: 749- 756. https://doi.org/10.1007/s00253-008-1625-9
  19. MacLafferty, F. W. and F. Turesek. 1993. Interpretation of Mass Spectra. 4th Ed. University Science Books.
  20. Marques, M. V., F. F. Naciuk, A. M. S. Mello, N. M. Seibel, and L. A. M. Fontoura. 2010. Determinacao do teor de esteres graxos em biodiesel metilico de soja por cromatografia gasosa utilizando oleato de etila como padrao interno. Quim. Nova 33: 978-980. https://doi.org/10.1590/S0100-40422010000400039
  21. Marques, M. V., C. F. G. Silva, F. F. Naciuk, and L. A. M. Fontoura. 2008. A quimica, os processos de obtencao e as especificacoes do biodiesel. Revista Analytica 33: 72-87.
  22. Meher, L. C., D. Vidya Sagar, and S. N. Naik. 2006. Technical aspects of biodiesel production by transesterification--a review. Renew. Sustain. Energy Rev. 10: 248-268. https://doi.org/10.1016/j.rser.2004.09.002
  23. Meng, X., J. Yang, X. Xu, L. Zhang, Q. Nie, and M. Xian. 2009. Biodiesel production from oleaginous microorganisms. Renew. Energy 34: 1-5. https://doi.org/10.1016/j.renene.2008.04.014
  24. Monteiro, M. R., A. R. P. Ambrozin, L. M. Liao, and A. G. Ferreira. 2008. Critical review on analytical methods for biodiesel characterization. Talanta 77: 593-605. https://doi.org/10.1016/j.talanta.2008.07.001
  25. Navarro, E., J. M. Lorca-Pascual, M. D. Quilles-Rosillo, F. E. Nicolas, V. Garre, S. Torres-Martinez, et al. 2001. A negative regulator of light-inducible carotenogenesis Mucor circinelloides. Molec. Genet. Genomics 266: 463-470. https://doi.org/10.1007/s004380100558
  26. Nicolas, F. E., S. Torres-Martinez, and R. M. Ruiz-Vazquez. 2003. Two classes of small antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes. EMBO J. 22: 3983-3991. https://doi.org/10.1093/emboj/cdg384
  27. Papanikolaou, S., M. Komaitis, and G. Aggelis. 2004. Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour. Technol. 95: 287-291.
  28. Petrini, O., T. N. Sieber, L. Toti, and O. Viret. 1992. Ecology, metabolite production and substrate utilization in endophytic fungi. Nat. Toxins 1: 185-196.
  29. Pinto, A. C., L. L. N. Guarieiro, M. J. C. Rezende, N. M. Ribeiro, E. A. Torres, W. A. Lopes, et al. 2005. Biodiesel: An overview. J. Braz. Chem. Soc. 16: 1313-1330. https://doi.org/10.1590/S0103-50532005000800003
  30. Proenca Barros, F. A. and E. Rodrigues-Filho. 2005. Four spiroquinazoline alkaloids from Eupenicillium sp. isolated as an endophytic fungus from leaves of Murraya paniculata (Rutaceae). Biochem. Syst. Ecol. 33: 257-268. https://doi.org/10.1016/j.bse.2004.09.002
  31. Schuchardt, U., R. Sercheli, and R. M. Vargas. 1998. Transesterification of vegetable oils: A review. J. Braz. Chem. Soc. 9: 199-210.
  32. Souza, A. D. L., E. Rodrigues-Filho, A. Q. L. Souza, J. O. Pereira, A. K. Calgarotto, V. Maso, et al. 2008. Koninginins, phospholipase A2 inhibitors from endophytic fungus Trichoderma koningii. Toxicon 51: 240-250. https://doi.org/10.1016/j.toxicon.2007.09.009
  33. The National Petroleum Agency, Natural Gas and Biofuels of Brazil. 2008. Resolution no 7. [online] Available at: http://nxt.anp. gov.br/NXT/gateway.dll/leg/resolucoes_anp/2008/mar%C3%A7o/ ranp%207%20-%202008.xml?f=templates$fn=document-
  34. Vicente, G., L. F. Bautista, R. Rodriguez, F. J. Gutiérrez, I. Sábada, R. M. Ruiz-Vázquez, et al. 2009. Biodiesel production from biomass of an oleaginous fungus. Biochem. Eng. J. 48: 22- 27. https://doi.org/10.1016/j.bej.2009.07.014
  35. Vicente, G., L. F. Bautista, F. J. Gutiérrez, R. Rodriguez, V. Martinez, R. Rodriguez-Frómeta, et al. 2010. Direct transformation of fungal biomass from submerged cultures into biodiesel. Energy Fuels 24: 3173-3178. https://doi.org/10.1021/ef9015872
  36. Vicente, G., M. Martínez, and J. Aracil. 2004. Integrated biodiesel production: A comparison of different homogeneous catalysts systems. Bioresour. Technol. 92: 297-305. https://doi.org/10.1016/j.biortech.2003.08.014
  37. Vichi, F. M. and M. T. C. Mansor. 2009. Energia, meio ambiente e economia: o Brasil no contexto mundial. Quim. Nova 32: 757-767. https://doi.org/10.1590/S0100-40422009000300019
  38. Wynn, J. P. and C. Ratledge. 1997. Malic enzyme is a major source of NADPH for lipid accumulation by Aspergillus nidulans. Microbiology 143: 253-257. https://doi.org/10.1099/00221287-143-1-253
  39. Wynn, J., A. Kendrick, and C. Ratledge. 1997. Sesamol as an inhibitor of growth and lipid metabolism in Mucor circinelloides via its action on malic enzyme. Lipids 32: 605-610. https://doi.org/10.1007/s11745-997-0077-1

Cited by

  1. Alternative routes of acetyl-CoA synthesis identified by comparative genomic analysis: involvement in the lipid production of oleaginous yeast and fungi vol.158, pp.1, 2011, https://doi.org/10.1099/mic.0.051946-0
  2. Current perspectives on the volatile-producing fungal endophytes vol.32, pp.4, 2011, https://doi.org/10.3109/07388551.2011.651429
  3. Endophytic Fungal Strains of Soybean for Lipid Production vol.7, pp.1, 2011, https://doi.org/10.1007/s12155-013-9377-5
  4. Endophytic Fungi: Prospects in Biofuel Production vol.85, pp.1, 2015, https://doi.org/10.1007/s40011-013-0294-3
  5. Insights into Penicillium brasilianum Secondary Metabolism and Its Biotechnological Potential vol.22, pp.6, 2017, https://doi.org/10.3390/molecules22060858
  6. 제주 수생식물에서 분리한 내생균류의 다양성 vol.27, pp.6, 2011, https://doi.org/10.5352/jls.2017.27.6.661
  7. Production of bioproducts by endophytic fungi: chemical ecology, biotechnological applications, bottlenecks, and solutions vol.102, pp.15, 2011, https://doi.org/10.1007/s00253-018-9101-7
  8. Characterization of the lipid profile of Antarctic brown seaweeds and their endophytic fungi by gas chromatography-mass spectrometry (GC-MS) vol.42, pp.8, 2011, https://doi.org/10.1007/s00300-019-02529-w
  9. 표주박이끼(Funaria hygrometrica)에서 분리된 2종의 국내 미기록 내생균 vol.47, pp.4, 2011, https://doi.org/10.4489/kjm.20190036