References
- Blennow, K., D. M. J. Leon, and H. Zetterberg. 2006. Alzheimer's disease [Review]. Lancet 368: 387-403. https://doi.org/10.1016/S0140-6736(06)69113-7
- Blokand, A., E. Geraerts, and A. Been. 2004. A detailed analysis of rat's spatial memory in a probe trial of a Morris task. Behav. Brain Res. 154: 71-75. https://doi.org/10.1016/j.bbr.2004.01.022
- Counts, S. E., B. He, S. Che, S. D. Ginsberg, and E. J. Mufson. 2008. Galanin hyperimmervation upregulates choline acetyltransferase expression in cholinergic basal forebrain neurons in Alzheimer's disease. Neurodegener. Dis. 5: 228-231. https://doi.org/10.1159/000113710
- Dashniani, M. G., G. V. Beseliia, G. A. Maglakelidze, M. A. Burdzhanadze, and N. T. Chkhikwishvili. 2009. Effects of the selective lesions of cholinergic septohippocampal neurons on different forms of memory and learning process. Georgian Med. News 166: 81-85.
- Drever, B. D., W. G. Anderson, H. Johnson, M. O'Callaghan, S. Seo, D. Y. Choi, G. Riedel, and B. Platt. 2007. Memantine acts as a cholinergic stimulant in the mouse hippocampus. J. Alzheimers Dis. 12: 319-333. https://doi.org/10.3233/JAD-2007-12405
- Dickson, D. W., S. C. Lee, L. A. Mattiace, S. H. Yen, and C. Brosnan. 1993. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease. Glia 7: 75-83. https://doi.org/10.1002/glia.440070113
- Ebert, U. and W. Kirch. 1998. Scopolamine model of dementia: Electroencephalogram findings and cognitive performance. Eur. J. Clin. Invest. 28: 944-949. https://doi.org/10.1046/j.1365-2362.1998.00393.x
- Eikelenboom, P., S. S. Zhan, W. A. van Gool, and D. Allsop. 1994. Inflammatory mechanisms in Alzheimer's disease. Trends Pharmacol. Sci. 15: 447-450. https://doi.org/10.1016/0165-6147(94)90057-4
- Elvander, E., P. A. Schött, J. Sandin, B. Bjelke, J. Kehr, T. Yoshitake, and S. O. Ogren. 2004. Intraseptal muscarinic ligands and galanin: Influence on hippocampal acetylcholine and cognition. Neuroscience 126: 541-557. https://doi.org/10.1016/j.neuroscience.2004.03.058
- Giacobini, E. 2002. Long term stabilizing effect of cholinesterase inhibitors in the therapy of Alzheimer's disease. J. Neural Transm. Suppl. 62: 181-187.
- Griffin, W. S., J. G. Sheng, G. W. Roberts, and R. E. Mrak. 1995. Interleukin-1 expression in different plaque types in Alzheimer's disease: Significance in plaque evolution. J. Neuropathol. Exp. Neurol. 54: 276-281. https://doi.org/10.1097/00005072-199503000-00014
- Hasselmo, M. E. 2006. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16: 710-715. https://doi.org/10.1016/j.conb.2006.09.002
- Heinrich, M. and H. I. Teoh. 2004. Galanthamine from snowdropthe development of a modern drug against Alzheimer's disease from local Caucasian knowledge. J. Ethnopharmacol. 92: 147-162. https://doi.org/10.1016/j.jep.2004.02.012
- Jackson, J. J. and M. R. Soliman. 1996. Effects of tacrine (THA) on spatial reference memory and cholinergic enzymes in specific rat brain regions. Life Sci. 58: 47-54.
- Jonasson, Z. 2005. Meta-analysis of sex differences in rodent models of learning and memory: A review of behavioral and biological data [Review]. Neurosci. Biobehav Rev. 28: 811-825. https://doi.org/10.1016/j.neubiorev.2004.10.006
- Kang, D. G., E. J. Sohn, M. K. Moon, Y. M. Lee, and H. S. Lee. 2005. Rehmannia glutinosa ameliorates renal function in the ischemia/reperfusion-induced acute renal failure rats. Biol. Pharm. Bull. 28: 1662-1667. https://doi.org/10.1248/bpb.28.1662
- Kim, H. M., C. S. An, K. Y. Jung, Y. K. Choo, J. K. Park, and S. Y. Nam. 1999. Rehmannia glutinosa inhibits tumor necrosis factor-alpha and interleukin-1 secretion from mouse astrocyte. Pharmacol. Res. 40: 171-176. https://doi.org/10.1006/phrs.1999.0504
- Lee, B., J. Park, S. Kwon, M. W. Park, S. M. Oh, M. J. Yeom, I. Shim, H. J. Lee, and D. H. Hahm. 2010. Effect of wild ginseng on scopolamine-induced acetylcholine depletion in the rat hippocampus. J. Pharm. Pharmacol. 62: 263-271. https://doi.org/10.1211/jpp.62.02.0015
- Ling, F. A., D. Z. Hui, and S. M. Ji. 2007. Protective effect of recombinant human somatotropin on amyloid beta-peptide induced learning and memory deficits in mice. Growth Horm. IGF Res. 17: 336-341.
- Liu, Y., F. Liu, Y. Zhao, W. H. Wu, and X. S. Wen. 2007. Compounds from Rehmannia glutinosa and their changes during the postharvest processing. World Phytomed. 22: 102- 108.
- Lorenzini, C. A., E. Baldi, C. Bucherelli, B. Sacchett, and G. Tassoni. 1996. Role of dorsal hippocampus in acquisition, consolidation and retrieval of rat's passive avoidance response: A tetrodotoxin functional inactivation study. Brain Res. 730: 32-39. https://doi.org/10.1016/0006-8993(96)00427-1
- Mingaud, F., L. C. Moine, N. Etchamendy, C. Mormede, R. Jaffard, and A. Marighetto. 2007. The hippocampus plays a critical role at encoding discontiguous events for subsequent declarative memory expression in mice. Hippocampus 17: 264- 270. https://doi.org/10.1002/hipo.20262
- Mohamed, A. F., K. Matsumoto, K. Tabata, H. Takayama, M. Kitajima, and H. Watanabe. 2000. Effects of Uncaria tomentosa total alkaloid and its components on experimental amnesia in mice: Elucidation using the passive avoidance test. J. Pharm. Pharmacol. 52: 1553-1561. https://doi.org/10.1211/0022357001777612
- Mohapel, P., G. Leanza, M. Kokaia, and O. Linvall. 2005. Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol. Aging 36: 939-946.
- Paxinos, G. and C. Watson. 1986. The Rat Brain in Stereotaxic Coordinates. New York, Academic Press.
- Rothwell, N., S. Allan, and S. Toulmond. 1997. The role of interleukin 1 in acute neurodegeneration and stroke: Pathophysiological and therapeutic implications. J. Clin. Invest. 100: 2648-2652. https://doi.org/10.1172/JCI119808
- Shahidi, S., A. Komaki, M. Mahmoodi, N. Atrvash, and M. Ghodrati. 2008. Ascorbic acid supplementation could affect passive avoidance learning and memory in rat. Brain Res. Bull. 76: 109-113. https://doi.org/10.1016/j.brainresbull.2008.01.003
- Sharma, D., M. Puri, A. K. Tiwary, N. Singh, and A. S. Jaggi. 2010. Antiamnesic effect of stevioside in scopolamine-treated rats. Indian J. Pharmacol. 42: 164-167. https://doi.org/10.4103/0253-7613.66840
- Sharma, D., M. Puri, A. K. Tiwary, N. Singh, and A. S. Jaggi. 2010. Antiamnesic effect of stevioside in scopolamine-treated rats. Indian J. Pharmacol. 42: 164-167. https://doi.org/10.4103/0253-7613.66840
- Shors, T. J., T. B. Seib, S. Levine, and R. F. Thompson. 1989. Inescapable versus escapable shock modulates long-term potentiation in the rat hippocampus. Science 244: 224-226. https://doi.org/10.1126/science.2704997
- Tian, Y. Y., L. J. An, L. Jiang, Y. L. Duan, J. Chen, and B. Jiang. 2006. Catalpol protects dopaminergic neurons from LPSinduced neurotoxicity in mesencephalic neuron-glia cultures. Life Sci. 80: 193-199. https://doi.org/10.1016/j.lfs.2006.09.010
- Wang, Z., Q. Liu, R. Zhang, S. Liu, Z. Xia, and Y. Hu. 2009. Catalpol ameliorates beta amyloid-induced degeneration of cholinergic neurons by elevating brain-derived neurotrophic factors. Neuroscience 163: 1363-1372. https://doi.org/10.1016/j.neuroscience.2009.07.041
- Wei, J., D. X. Lu, R. B. Qi, H. D. Wang, and X. H. Jiang. 2010. Effect of Kangshiai Yizhi Formula I on learning and memory dysfunction induced by scopolamine in mice. Chin. J. Integr. Med. 16: 252-257. https://doi.org/10.1007/s11655-010-0252-3
- Yamada, M., T. Chiba, J. Sasabe, K. Terashita, S. Aiso, and M. Matsuoka. 2008. Nasal colivelin treatment ameliorates memory impairment related to Alzheimer's disease. Neuropsychopharmacology 33: 2020-2032. https://doi.org/10.1038/sj.npp.1301591
- Zhang, X. L., B. Jiang, Z. B. Li, S. Hao, and L. J. An. 2007. Catalpol ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose. Pharmacol. Biochem. Behav. 88: 64-72. https://doi.org/10.1016/j.pbb.2007.07.004
- Zhang, Z. J. 2004. Therapeutic effects of herbal extracts and constituents in animal model of psychiatric disorders. Life Sci. 75: 1659-1699. https://doi.org/10.1016/j.lfs.2004.04.014
Cited by
- Fucoidan Ameliorates Scopolamine-induced Neuronal Impairment and Memory Dysfunction in Rats via Activation of Cholinergic System and Regulation of cAMP-response Element-binding Protein and Brain-deriv vol.55, pp.6, 2011, https://doi.org/10.1007/s13765-012-2137-y
- Protective effect of Phellodendri Cortex against lipopolysaccharide-induced memory impairment in rats vol.16, pp.4, 2012, https://doi.org/10.1080/19768354.2012.699004
- OMC-2010 구성약재가 마우스의 비장세포 cytokine 생성에 미치는 영향 vol.27, pp.6, 2011, https://doi.org/10.6116/kjh.2012.27.6.49
- NBM-T-L-BMX-OS01, Semisynthesized from Osthole, Is a Novel Inhibitor of Histone Deacetylase and Enhances Learning and Memory in Rats vol.2013, pp.None, 2011, https://doi.org/10.1155/2013/514908
- Rubus coreanus Miquel Ameliorates Scopolamine-Induced Memory Impairments in ICR Mice vol.17, pp.10, 2011, https://doi.org/10.1089/jmf.2013.3004
- PMC-12, a Prescription of Traditional Korean Medicine, Improves Amyloid β -Induced Cognitive Deficits through Modulation of Neuroinflammation vol.2015, pp.None, 2011, https://doi.org/10.1155/2015/768049
- Emilia coccinae (SIMS) G Extract improves memory impairment, cholinergic dysfunction, and oxidative stress damage in scopolamine-treated rats vol.15, pp.None, 2011, https://doi.org/10.1186/s12906-015-0864-4
- In Vivo Screening of Traditional Medicinal Plants for Neuroprotective Activity against Aβ42 Cytotoxicity by Using Drosophila Models of Alzheimer’s Disease vol.38, pp.12, 2011, https://doi.org/10.1248/bpb.b15-00459
- Topical application of herbal formula for the treatment of ligature-induced periodontitis vol.45, pp.4, 2011, https://doi.org/10.5051/jpis.2015.45.4.145
- Differential metformin dose-dependent effects on cognition in rats: role of Akt vol.233, pp.13, 2011, https://doi.org/10.1007/s00213-016-4301-2
- Cognitive enhancing effect of the fermented Gumiganghwal-tang on scopolamine-induced memory impairment in mice vol.19, pp.3, 2011, https://doi.org/10.1179/1476830514y.0000000152
- Fucoxanthin, a Marine Carotenoid, Reverses Scopolamine-Induced Cognitive Impairments in Mice and Inhibits Acetylcholinesterase in Vitro vol.14, pp.4, 2011, https://doi.org/10.3390/md14040067
- Protection against brain tissues oxidative damage as a possible mechanism for improving effects of low doses of estradiol on scopolamine-induced learning and memory impairments in ovariectomized rats vol.5, pp.None, 2011, https://doi.org/10.4103/2277-9175.186981
- Dihuang Yinzi, a Classical Chinese Herbal Prescription, for Amyotrophic Lateral Sclerosis: A 12-Year Follow-up Case Report vol.95, pp.14, 2011, https://doi.org/10.1097/md.0000000000003324
- Water-soluble ginseng oligosaccharides protect against scopolamine-induced cognitive impairment by functioning as an antineuroinflammatory agent vol.40, pp.3, 2011, https://doi.org/10.1016/j.jgr.2015.07.007
- Main Plant Extracts’ Active Properties Effective on Scopolamine-Induced Memory Loss vol.32, pp.7, 2017, https://doi.org/10.1177/1533317517715906
- Rehmanniae Radix, an Effective Treatment for Patients with Various Inflammatory and Metabolic Diseases: Results from a Review of Korean Publications vol.20, pp.2, 2011, https://doi.org/10.3831/kpi.2017.20.010
- Ethanol extract of Rehmannia glutinosa exerts antidepressant-like effects on a rat chronic unpredictable mild stress model by involving monoamines and BDNF vol.33, pp.3, 2011, https://doi.org/10.1007/s11011-018-0202-x
- Radix Rehmanniae Extract Ameliorates Experimental Autoimmune Encephalomyelitis by Suppressing Macrophage-Derived Nitrative Damage vol.9, pp.None, 2018, https://doi.org/10.3389/fphys.2018.00864
- Comparison of scopolamine-induced cognitive impairment responses in three different ICR stocks vol.34, pp.4, 2011, https://doi.org/10.5625/lar.2018.34.4.317
- Pharmacognostical Sources of Popular Medicine To Treat Alzheimer’s Disease vol.12, pp.None, 2011, https://doi.org/10.2174/1874104501812010023
- Traditional Oriental Medicines and Alzheimer’s Disease vol.10, pp.4, 2011, https://doi.org/10.14336/ad.2018.0328
- Substituted Aminobenzothiazole Derivatives of Tacrine: Synthesis and Study on Learning and Memory Impairment in Scopolamine-Induced Model of Amnesia in Rat vol.19, pp.1, 2011, https://doi.org/10.2174/1389557518666180716122608
- ALWPs Improve Cognitive Function and Regulate Aβ Plaque and Tau Hyperphosphorylation in a Mouse Model of Alzheimer’s Disease vol.12, pp.None, 2011, https://doi.org/10.3389/fnmol.2019.00192
- Identification of phytotoxic metabolites released from Rehmannia glutinosa suggest their importance in the formation of its replant problem vol.441, pp.1, 2019, https://doi.org/10.1007/s11104-019-04136-4
- Herb-Derived Products: Natural Tools to Delay and Counteract Stem Cell Senescence vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8827038
- Catalpol inhibits the proliferation, migration and metastasis of HCC cells by regulating miR-140-5p expression vol.23, pp.1, 2011, https://doi.org/10.3892/mmr.2020.11667
- 난소 절제 동물모델을 이용한 경옥고의 갱년기 증후군 개선 효과 vol.51, pp.4, 2011, https://doi.org/10.22889/kjp.2020.51.4.310
- Classical Active Ingredients and Extracts of Chinese Herbal Medicines: Pharmacokinetics, Pharmacodynamics, and Molecular Mechanisms for Ischemic Stroke vol.2021, pp.None, 2011, https://doi.org/10.1155/2021/8868941
- Grewia asiatica Berry Juice Diminishes Anxiety, Depression, and Scopolamine-Induced Learning and Memory Impairment in Behavioral Experimental Animal Models vol.7, pp.None, 2011, https://doi.org/10.3389/fnut.2020.587367