DOI QR코드

DOI QR Code

Optimization of Rhamnetin Production in Escherichia coli

  • Sung, Su-Hyun (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University) ;
  • Kim, Bong-Gyu (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University) ;
  • Ahn, Joong-Hoon (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University)
  • Received : 2011.04.28
  • Accepted : 2011.05.18
  • Published : 2011.08.28

Abstract

POMT7, which is an O-methyltransferase from poplar, transfers a methyl group to several flavonoids that contain a 7-hydroxyl group. POMT7 has been shown to have a higher affinity toward quercetin, and the reaction product rhamnetin has been shown to inhibit the formation of beta-amyloid. Thus, rhamnetin holds great promise for use in therapeutic applications; however, methods for mass production of this compound are not currently available. In this study, quercetin was biotransformed into rhamnetin using Escherichia coli expressing POMT7, with the goal of developing an approach for mass production of rhamnetin. In order to maximize the production of rhamnetin, POMT7 was subcloned into four different E. coli expression vectors, each of which was maintained in E. coli with a different copy number, and the best expression vector was selected. In addition, the S-adenosylmethionine biosynthesis pathway was engineered for optimal cofactor production. Through the combination of optimized POMT7 expression and cofactor production, the production of rhamnetin was increased up to 111 mg/l, which is approximately 2-fold higher compared with the E. coli strain containing only POMT7.

Keywords

References

  1. Castrillo, J. L. and L. Carrasco. 1987. Action of 3-methylquercetin on poliovirus RNA replication. J. Virol. 61: 3319-3321.
  2. Chemler, J. A., Z. L. Fowler, K. P. McHugh, and M. A. G. Koffas. 2010. Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab. Eng. 12: 96-104. https://doi.org/10.1016/j.ymben.2009.07.003
  3. Fowler, Z. L., W. W. Gikandi, and M. A. G. Koffas. 2009. Increased malonyl coenzyme A biosynthesis by using the Escherichia coli metabolic network and its application to flavanone production. Appl. Environ. Microbiol. 75: 5831-5839. https://doi.org/10.1128/AEM.00270-09
  4. Forkmann, G. and W. Heller. 1999. Biosynthesis of flavonoids, pp. 713-748. In D. Barton, K. Nakanishi, and O. Meth-Cohn (eds.). Comprehensive Natural Products Chemistry. Elsevier Science Ltd., Oxford.
  5. Fukai, T., A. Marumo, K. Kaitou, T. Kanda, S. Terada, and T. Nomura. 2002. Anti-Helicobacter pylori flavonoids from licorice extract. Life Sci. 71: 1449-1463. https://doi.org/10.1016/S0024-3205(02)01864-7
  6. Harle, J. and A. Bechthold. 2009. The power of glycosyltransferases to generate bioactive natural compounds. Methods Enzymol. 458: 309-333.
  7. Kim, B. G., B.-R. Jung, Y. Lee, H.-G. Hur, Y. Lim, and J.-H. Ahn. 2006. Regiospecific flavonoid 7-O-methylation with Streptomyces avermitilis O-methyltransferase expressed in Escherichia coli. J. Agric. Food Chem. 54: 823-828. https://doi.org/10.1021/jf0522715
  8. Kim, B. G., H. Kim, H.-G. Hur, Y. Lim, and J. H. Ahn. 2006. Regioselectivity of 7-O-methyltransferase of poplar to flavones. J. Biotech. 138: 155-162.
  9. Kim, B. G., Y. Lee, H.-G. Hur, Y. Lim, and J.-H. Ahn. 2006. Flavonoid 3'-O-methyltransferase from rice: cDNA cloning, characterization and functional expression. Phytochemistry 67: 387-394. https://doi.org/10.1016/j.phytochem.2005.11.022
  10. Kim, B.-G., S. H. Sung, Y. Chong, Y. Lim, and J.-H. Ahn. 2010. Plant flavonoid O-methyltransferases: Substrate specificity and application. J. Plant Biol. 53: 321-329. https://doi.org/10.1007/s12374-010-9126-7
  11. Kim, H., B. S. Park, K. G. Lee, C. Y. Choi, S. S. Jang, Y. H. Kim, and S. E. Lee. 2005. Effects of naturally occurring compounds on fibril formation and oxidative stress of betaamyloid. J. Agric. Food Chem. 53: 8537-8541. https://doi.org/10.1021/jf051985c
  12. Lam, K. C., R. K. Ibrahimm, B. Behdad, and S. Dayanandan. 2007. Structure, function, and evolution of plant Omethyltransferases. Genome 50: 1001-1013. https://doi.org/10.1139/G07-077
  13. Markham, G. D., J. DeParasis, and J. Gatmaitan. 1984. The sequence of metK, the structural gene for S-adenosylmethionine synthetase in Escherichia coli. J. Biol. Chem. 259: 14505- 14507.
  14. Noh, K. H., J. W. Son, H. J. Kim, and D. K. Oh. 2009. Ginsenoside compound K production from ginseng root extract by a thermostable $\beta$-glycosidase from Sulfolobus solfataricus. Biosci. Biotechnol. Biochem. 73: 316-321. https://doi.org/10.1271/bbb.80525
  15. Pollard, D. J. and J. M. Woodley. 2007. Biocatalysis for pharmaceutical intermediates: The future is now. Trends Biotechnol. 25: 63-73.
  16. Straathof, A. J. J., S. Panke, and A. Schmid. 2002. The production of fine chemicals by biotransformation. Curr. Opin. Biotechnol. 13: 548-556. https://doi.org/10.1016/S0958-1669(02)00360-9
  17. van Belion, J. B., W. A. Duetz, A. Schmid, and B. Witholt. 2003. Practical issues in the application of oxygenase. Trends Biotechnol. 21: 170-177. https://doi.org/10.1016/S0167-7799(03)00032-5
  18. Zhao, X. Q., B. Gust, and L. Heide. 2010. S-Adenosylmethionine (SAM) and antibiotic biosynthesis: Effect of external addition of SAM and of overexpression of SAM biosynthesis genes on novobiocin production in Streptomyces. Arch. Microbiol. 192: 289-297. https://doi.org/10.1007/s00203-010-0548-x

Cited by

  1. Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: production of hydroxycinnamic acid conjugates vol.12, pp.None, 2011, https://doi.org/10.1186/1475-2859-12-15
  2. Regioselective synthesis of flavonoid bisglycosides using Escherichia coli harboring two glycosyltransferases vol.97, pp.12, 2013, https://doi.org/10.1007/s00253-013-4844-7
  3. Microbial biosynthesis of medicinally important plant secondary metabolites vol.31, pp.11, 2011, https://doi.org/10.1039/c4np00057a
  4. Rationally engineered variants of S-adenosylmethionine (SAM) synthase: reduced product inhibition and synthesis of artificial cofactor homologues vol.51, pp.17, 2015, https://doi.org/10.1039/c4cc08478k
  5. Deregulation of S -adenosylmethionine biosynthesis and regeneration improves methylation in the E. coli de novo vanillin biosynthesis pathway vol.15, pp.None, 2016, https://doi.org/10.1186/s12934-016-0459-x
  6. CRISPRi-mediated metabolic engineering of E. coli for O -methylated anthocyanin production vol.16, pp.None, 2011, https://doi.org/10.1186/s12934-016-0623-3
  7. 대장균에서 naringenin으로부터 생리활성 isokaemferide의 생합성 vol.62, pp.1, 2011, https://doi.org/10.3839/jabc.2019.001