DOI QR코드

DOI QR Code

Bioremediation of Crude Oil by White Rot Fungi Polyporus sp. S133

  • Kristanti, Risky Ayu (Department of Research, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi) ;
  • Hadibarata, Tony (Institute of Environmental and Water Research Management, Universiti Teknologi Malaysia) ;
  • Toyama, Tadashi (Department of Research, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi) ;
  • Tanaka, Yasuhiro (Department of Research, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi) ;
  • Mori, Kazuhiro (Department of Research, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi)
  • Received : 2011.05.23
  • Accepted : 2011.06.10
  • Published : 2011.09.28

Abstract

The bioremediation potential of crude oil by Polyporus sp. S133 pre-grown in wood meal was investigated in two separate experiment trials; liquid medium and soil. The effect of three nutrients (glucose, polypeptone, and wood meal), oxygen flow, and some absorbent on the efficiency of the process was also evaluated. Degradation of crude oil in soil was significantly increased with an addition of oxygen flow and some absorbent (kapok and pulp). The highest degradation rate of crude oil was 93% in the soil with an addition of 10% kapok. The present study clearly demonstrates that, if suitably developed, Polyporus sp. S133 could be used to remediate soil contaminated with crude oil.

Keywords

References

  1. Alexander, M. 1999. Biodegradation and Bioremediation, pp. 325-353. 2nd Ed. Academic Press, New York.
  2. Barathi, S. and N. Vasudevan. 2001. Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from petroleum contaminated soil. Environ. Int. 26: 413-416. https://doi.org/10.1016/S0160-4120(01)00021-6
  3. Barr, D. P. and S. D. Aust. 1994. Mechanisms white rot fungi use to degrade pollutants. Environ. Sci.Tech. 28: 78A-87A. https://doi.org/10.1021/es00051a724
  4. Bossert, I. and R. Bartha. 1984. The fate of petroleum in the soil ecosystems, pp. 435-473. In R. M. Atlas (ed.). Petroleum Microbiology. Macmillan, New York.
  5. Boulding, J. R. 1996. EPA Environmental Engineering Sourcebook. Ann Arbor Press, Chelsea, Michigan.
  6. Dao, T. H., D. B. Marx, T. L. Lavy, and J. Dragun. 1982. Effect, and statistical evaluation, of soil sterilization on analine and diuron adsorption isotherms. Soil Sci. Soc. Am. J. 46: 963-969. https://doi.org/10.2136/sssaj1982.03615995004600050016x
  7. Dibble, J. T. and R. Bartha. 1979. The effect of environmental parameters on the biodegradation of oily sludge. Appl. Environ. Microbiol. 37: 729-739.
  8. Enggen, T. and A. Majcherzykb. 1998. Removal of polycyclic aromatic hydrocarbon (PAH) in contaminated soil by white rot fungi Pleurotus ostreotus. Int. Biodeter. Biodegrad. 41: 111-117. https://doi.org/10.1016/S0964-8305(98)00002-X
  9. Eriksson, M. G. and B. Dalhammar. 1995. Aerobic degradation of hydrocarbon mixture in natural contaminated potting soil in indigenous microorganisms at $20^{\circ}C$ and $6^{\circ}C$. Appl. Microbiol. Biotech. 51: 532-535.
  10. Fanta, G. F., R. C. Burr, and W. M. William. 1986. Oil absorbency of graft copolymers from softwood pulp. Polym. Sci. Technol. 33: 107-114.
  11. Field, J. A., E. DeJong, G. F. Costa, and J. A. M. DeBont. 1992. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl. Environ. Microbiol. 58: 2219-2226.
  12. Johnston, H. W., G. G. Briggs, and M. Alexander. 1972. Metabolism of 3-chlorobenzoic acid by a Pseudomonas. Soil Biol. Biochem. 4: 187-190. https://doi.org/10.1016/0038-0717(72)90010-7
  13. Hadibarata, T., S. Tachibana, and K. Itoh. 2009. Biodegradation of chrysene, an aromatic hydrocarbon by Polyporus sp. S133 in liquid medium. J. Hazard. Mater. 164: 911-917. https://doi.org/10.1016/j.jhazmat.2008.08.081
  14. Hadibarata, T. and S. Tachibana. 2010. Characterization of phenanthrene degradation by strain Polyporus sp. S133. J. Environ. Sci. 22: 142-149 https://doi.org/10.1016/S1001-0742(09)60085-1
  15. Harayama, S. 1997. Polycyclic aromatic hydrocarbon bioremediation design. Curr. Opin. Biotechnol. 8: 268-273. https://doi.org/10.1016/S0958-1669(97)80002-X
  16. Kingston, P. F. 2002. Long-term environmental impact of oil spills. Spill Sci. Tech. Bull. 7: 53-61. https://doi.org/10.1016/S1353-2561(02)00051-8
  17. Klemm, D., B. Philip, T. Heinz, U. Heinz, and W. Wagenknecht. 1998. Comprehensive Cellulose Chemistry, Vol. 1, pp. 9-25. Wiley-VCH, Weinheim.
  18. Krooneman, J., E. B. A. Wieringa, E. R. B. Moore, J. Gerritse, R. A. Prins, and J. C. Gottschal. 1996. Isolation of Alcaligenes sp. strain L6 at low oxygen concentrations and degradation of 3-chlorobenzoate via pathway not involving (chloro) catechols. Appl. Environ. Microbiol. 62: 2427-2434.
  19. Lal, B. and S. Khanna. 1996. Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J. Appl. Bacteriol. 81: 355-362.
  20. Leonardi, V., V. Sasek, M. Petruccioli, A. D'Annibale, P. Erbanova, and T. Cajthaml. 2007. Bioavailability modification and fungal biodegradation of PAHs in aged industrial soils. Int. Biodeterior. Biodegrad. 60: 165-170. https://doi.org/10.1016/j.ibiod.2007.02.004
  21. Lim, T.T. and X. Huang. 2007. Evaluation of kapok (Ceiba pentandra (L.) Gaertn.) as a natural hollow hydrophobic-oleophilic fibrous sorbent for oil spill cleanup. Chemosphere 66: 955-963. https://doi.org/10.1016/j.chemosphere.2006.05.062
  22. Liu, C. and R. Bai. 2006. Adsorptive removal of copper ions with highly porous chitosan/cellulose acetate blend hollow fiber membranes. J. Membr. Sci. 284: 313-322. https://doi.org/10.1016/j.memsci.2006.07.045
  23. Liu, R., W. Ma, C. Y. Jia, L. Wang, and H. Y. Li. 2007. Effect of pH on biosorption of boron onto cotton cellulose. Desalination 207: 257-267. https://doi.org/10.1016/j.desal.2006.07.012
  24. Martens, R. and F. Zadrazil. 1998. Screening of white rot fungi for their ability to mineralize polycyclic aromatic hydrocarbons in soil. Folia Microbiol. 43: 97-103. https://doi.org/10.1007/BF02815552
  25. Masters, G. M. 1998. Introduction to Environmental Engineering and Science, pp. 249-254. 2nd Ed. Prentice-Hall, London.
  26. Mishra, S., B. Lal, J. Jyot, S. Rajan, S. Khanna, and R. C. Kuhad. 1999. Field study: In situ bioremediation of oily sludge contaminated land using "OILZAPPER", pp. 174-183. Haz. Ind. Wastes 31st Mid-Atlantic Ind. Haz. Waste Conf. Technomic Publishing Co., Inc. Lancaster.
  27. Mittal, A. and P. Singh. 2009. Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills. Indian J. Exp. Biol. 47: 760-765.
  28. Nakatsu, C. H. and C. Wyndham. 1993. Cloning and expression of the transposable chlorobenzoate-3,4-dioxygenase genes of Alcaligenes sp. strain BR60. Appl. Environ. Microbiol. 59: 3625-3633.
  29. Ostberg, T. L., A. P. Jonsson, and U. S. Lundstrom. 2006. Accelerated biodegradation of n-alkanes in aqueous solution by the addition of fermented whey. Int. Biodeter. Biodegrad. 57: 190-194. https://doi.org/10.1016/j.ibiod.2006.01.006
  30. Ostberg, T. L., A. P. Jonsson, and U. S. Lundstrom. 2007. Enhanced degradation of n-hexadecane in diesel fuel contaminated soil by the addition of fermented whey. Soil Sed. Cont. 16: 221-232.
  31. Pometto, A. I., C. S. Oulman, A. A. Dispirito, K. E. Johnson, and S. Baranow. 1998. Potential of agricultural by-products in the bioremediation of fuel spills. J. Ind. Microbiol. Biotechnol. 20: 369-372. https://doi.org/10.1038/sj.jim.2900542
  32. Radwan, S. S., D. Al-Mailem, I. El-Nemr, and S. Salamah. 2000. Enhanced remediation of hydrocarbon contaminated desert soil fertilized with organic carbons. Int. Biodeter. Biodegrad. 46: 129-132. https://doi.org/10.1016/S0964-8305(00)00088-3
  33. Rahman, K. S. M., J. T. Rahman, P. Lakshmanaperumalsamy, and I. M. Banat. 2002. Towards efficient crude oil degradation by a mixed bacterial consortium. Biores. Technol. 85: 257-261. https://doi.org/10.1016/S0960-8524(02)00119-0
  34. Ramos, J. L., E. Duque, and M. I. Ramos-Gonzalez. 1991. Survival in soils of an herbicide-resistant Pseudomonas putida strain bearing a recombinant TOL plasmid. Appl. Environ. Microbiol. 57: 260-266.
  35. Sakalle, K. and S. Rajkumar. 2009. Isolation of crude oil-degrading marine bacteria and assessment for biosurfactant production. Int. J. Microbiol. 7: 2.
  36. Salonius, P. O., J. B. Johnson, and F. E. Chase. 1967. A comparison of autoclaved and gamma-irradiated soils as media for microbial colonization experiments. Plant Soil 27: 239-248. https://doi.org/10.1007/BF01373392
  37. Swindoll, C. M., C. M. Aelion, and F. K. Pfaender. 1988. Influence of inorganic and organic nutrients on aerobic biodegradation and on the adaptation response of subsurface microbial communities. Appl. Environ. Microbiol. 54: 212-217.
  38. Valentin, L., T. A. Lu-Chau, C. Lopez, G. Feijoo, M. T. Moreira, and J. M. Lerna. 2007. Biodegradation of dibenzothiophene, fluoranthene, pyrene, and chrysene in a soil slurry reactor by the white-rot fungus Bjerkandera sp. BOS55. Proc. Biochem. 42: 641-648. https://doi.org/10.1016/j.procbio.2006.11.011
  39. Van Hamme, J. D. and O. P. Ward. 2000. Development of a method for the application of solid-phase microextraction to monitor the biodegradation of volatile hydrocarbons during growth on crude oil. J. Ind. Microbiol. Biotechnol. 28: 252-260.
  40. Verma, S., S. Bhargava, and V. Pruthi. 2006. Oily sludge degradation by bacteria from Ankleshwar, India. Int. Biodeter. Biodegrad. 57: 207-213. https://doi.org/10.1016/j.ibiod.2006.02.004
  41. Wolf, D. C., T. H. Dao, H. D. Scott, and T. L. Lavy. 1989. Influence of sterilization methods on selected microbiological, physical, and chemical properties. J. Environ. Qual. 18: 39-44.
  42. Zhang, G., Y. Wu, X. Qian, and Q. Meng. 2005. Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids. J. Zhejiang Univ. Sci. 6B:725-730. https://doi.org/10.1631/jzus.2005.B0725

Cited by

  1. Characterization of pyrene biodegradation by white-rot fungusPolyporussp. S133 : Pyrene degradation by fungi vol.59, pp.6, 2011, https://doi.org/10.1002/bab.1048
  2. Degradation and transformation of anthracene by white-rot fungus Armillaria sp. F022 vol.58, pp.5, 2013, https://doi.org/10.1007/s12223-013-0221-2
  3. Biodegradation and metabolite transformation of pyrene by basidiomycetes fungal isolate Armillaria sp. F022 vol.36, pp.4, 2013, https://doi.org/10.1007/s00449-012-0803-4
  4. Enhancement of Ligninolytic Activity of Trametes versicolor U97 Pre-grown in Agricultural Residues to Degrade DDT in Soil vol.224, pp.7, 2011, https://doi.org/10.1007/s11270-013-1616-z
  5. Microbial transformation and sorption of anthracene in liquid culture vol.36, pp.9, 2011, https://doi.org/10.1007/s00449-012-0850-x
  6. Biosorption and biotransformation of fluoranthene by the white-rot fungusPleurotus eryngiiF032 : Fluoranthene Transformation by Fungi vol.61, pp.2, 2011, https://doi.org/10.1002/bab.1155
  7. Screening for plants and rhizospheral fungi with bioremediation potency of petroleum-polluted soils in a Tehran oil refinery area vol.96, pp.1, 2011, https://doi.org/10.1080/02772248.2014.911874
  8. Effect of surfactants and identification of metabolites on the biodegradation of fluoranthene by basidiomycetes fungal isolate Armillaria sp. F022 vol.37, pp.4, 2011, https://doi.org/10.1007/s00449-013-1025-0
  9. Fluorene biodegradation and identification of transformation products by white-rot fungus Armillaria sp. F022 vol.25, pp.3, 2014, https://doi.org/10.1007/s10532-013-9666-x
  10. Bioemulsification activity assessment of an indigenous strain of halotolerant Planococcus and partial characterization of produced biosurfactants vol.11, pp.5, 2014, https://doi.org/10.1007/s13762-014-0548-5
  11. Degradation of Bunker C Fuel Oil by White-Rot Fungi in Sawdust Cultures Suggests Potential Applications in Bioremediation vol.10, pp.6, 2011, https://doi.org/10.1371/journal.pone.0130381
  12. Efficiency of Indigenous Filamentous Fungi for Biodegradation of Petroleum Hydrocarbons in Medium and Soil: Laboratory Study from Ecuador vol.95, pp.3, 2011, https://doi.org/10.1007/s00128-015-1605-6
  13. Downscaling the in vitro test of fungal bioremediation of polycyclic aromatic hydrocarbons: methodological approach vol.408, pp.4, 2011, https://doi.org/10.1007/s00216-015-9191-3
  14. Ligninolytic fungus Polyporus sp. S133 mediated metabolic degradation of fluorene vol.47, pp.3, 2011, https://doi.org/10.1016/j.bjm.2016.04.015
  15. Effective degradation of organic pollutants in aqueous media by microbial strains isolated from soil of a contaminated industrial site vol.3, pp.None, 2011, https://doi.org/10.1186/s40538-016-0052-x
  16. Bioremediation Technology Potential for Management of Soil and Water Pollution from Anticipated Rapid Industrialization and Planned Oil and Gas Sector in Uganda: A Review vol.8, pp.11, 2011, https://doi.org/10.4236/jep.2017.811085
  17. White rot fungi and advanced combined biotechnology with nanomaterials: promising tools for endocrine-disrupting compounds biotransformation vol.38, pp.5, 2011, https://doi.org/10.1080/07388551.2017.1386613
  18. Influence of light on lignin‐degrading activities of fungal genus Polyporus s. str vol.58, pp.11, 2011, https://doi.org/10.1002/jobm.201800183
  19. Heavy Metals Scavenging Potential of Trichoderma asperellum and Hypocrea nigricans Isolated from Acid Soil of Jharkhand vol.59, pp.1, 2011, https://doi.org/10.1007/s12088-018-0756-7
  20. Laboratory-scale bioremediation potential of single and consortia fungal isolates from two natural hydrocarbon seepages in Trinidad, West Indies vol.23, pp.3, 2011, https://doi.org/10.1080/10889868.2019.1640181
  21. Mycoremediation of petroleum contaminated soils: progress, prospects and perspectives vol.21, pp.9, 2011, https://doi.org/10.1039/c9em00101h
  22. Biotransformation and Degradation Pathway of Pyrene by Filamentous Soil Fungus Trichoderma sp. F03 vol.231, pp.4, 2011, https://doi.org/10.1007/s11270-020-04514-0
  23. Leading edges in bioremediation technologies for removal of petroleum hydrocarbons vol.27, pp.22, 2011, https://doi.org/10.1007/s11356-019-06124-8
  24. Biodegradation of buried crude oil in soil microcosm by fungal co-culture vol.980, pp.None, 2020, https://doi.org/10.1088/1757-899x/980/1/012084