DOI QR코드

DOI QR Code

Roles of Putative Sodium-Hydrogen Antiporter (SHA) Genes in S. coelicolor A3(2) Culture with pH Variation

  • Kim, Yoon-Jung (Department of Chemical and Biomolecular Engineering (The Brain Korea 21 Program), Korea Advanced Institute of Science and Technology) ;
  • Moon, Myung-Hee (Department of Chemical and Biomolecular Engineering (The Brain Korea 21 Program), Korea Advanced Institute of Science and Technology) ;
  • Lee, Jae-Sun (Department of Chemical and Biomolecular Engineering (The Brain Korea 21 Program), Korea Advanced Institute of Science and Technology) ;
  • Hong, Soon-Kwang (Division of Bioscience and Bioinformatics, Myung-Ji University) ;
  • Chang, Yong-Keun (Department of Chemical and Biomolecular Engineering (The Brain Korea 21 Program), Korea Advanced Institute of Science and Technology)
  • Received : 2011.05.04
  • Accepted : 2011.06.15
  • Published : 2011.09.28

Abstract

Culture pH change has some important roles in signal transduction and secondary metabolism. We have already reported that acidic pH shock enhanced actinorhodin production in Streptomyces coelicolor. Among many potential governing factors on pH variation, the putative $Na^+/H^+$ antiporter (sha) genes in S. coelicolor have been investigated in this study to elucidate the association of the sha on pH variation and secondary metabolism. Through the transcriptional analysis and overexpression experiments on 8 sha genes, we observed that most of the sha expressions were promoted by pH shock, and in the opposite way the pH changes and actinorhodin production were enhanced by the overexpression of each sha. We also confirmed that sha8 especially has a main role in maintaining cell viability and pH homeostasis through $Na^+$ extrusion, in salt effect experiment under the alkaline medium condition by deleting sha8. Moreover, this gene was observed to have a function of pH recovery after pH variation such as the pH shock, being able to cause the sporulation. However, actinorhodin production was not induced by the only pH recovery. The sha8 gene could confer on the host cell the ability to recover pH to the neutral level after pH variation like a pH drop. Sporulation was closely associated with this pH recovery caused by the action of sha8, whereas actinorhodin production was not due to such pH variation patterns alone.

Keywords

References

  1. Bierman, M., R. Logan, K. O'Brien, E. T. Seno, R. N. Rao, and B. E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces. Gene 116: 43-49. https://doi.org/10.1016/0378-1119(92)90627-2
  2. Bystrykh, L. V., M. A. Fernndez-Moreno, J. K. Herrema, F. Malpartida, D. A. Hopwood, and L. Dijkhuizen. 1996. Production of actinorhodin-related "blue pigments" by Streptomyces coelicolor A3(2). J. Bacteriol. 178: 2238-2244. https://doi.org/10.1128/jb.178.8.2238-2244.1996
  3. Cheng, J., A. A. Guffanti, and T. A. Krulwich. 1994. The chromosomal tetracycline resistance locus of Bacillus subtilis encodes a $Na^+/H^+$ antiporter that is physiologically important at elevated pH. J. Biol. Chem. 269: 27365-27371.
  4. Cosby, W. M. and P. Zuber. 1997. Regulation of Bacillus sigmaH (spo0H) and AbrB in response to changes in external pH. J. Bacteriol. 179: 6778-6787. https://doi.org/10.1128/jb.179.21.6778-6787.1997
  5. Denis, F. and R. Brzezinski. 1991. An improved aminoglycoside resistance gene cassette for use ingram- negative bacteria and Streptomyces. FEMS Microbiol. Lett. 65: 261-264.
  6. Guffanti, A. A., D. E. Cohen, H. R. Kaback, and T. A. Krulwich. 1981. Relationship between the $Na^+/H^+$ antiporter and $Na^+$/substrate symport in Bacillus alcalophilus. Proc. Natl. Acad. Sci. USA 78: 1481-1484. https://doi.org/10.1073/pnas.78.3.1481
  7. Hanahan, D., J. Jessee, and F. R. Bloom. 1991. Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol. 204: 63-113.
  8. Ito, M., A. A. Guffanti, B. Oudega, and T. A. Krulwich. 1999. mrp, a multigene, multifunctional locus in Bacillus subtilis with roles in resistance to cholate and to $Na^+$ and in pH homeostasis. J. Bacteriol. 181: 2394-2402.
  9. Ivey, D. M., A. A. Guffanti, Z. Shen, N. Kudyan, and T. A. Krulwich. 1992. The cadC gene product of alkaliphilic Bacillus firmus OF4 partially restores $Na^+$ resistance to an Escherichia coli strain lacking an $Na^+/H^+$ antiporter (NhaA). J. Bacteriol. 174: 4878-4884. https://doi.org/10.1128/jb.174.15.4878-4884.1992
  10. Kieser, T., M. J. Bibb, M. J. Buttner, K. F, Chater and D. A. Hopwood. 2000. Practical Streptomyces Genetics. John Innes Foundation, Norwich.
  11. Kim, C. J., Y. K. Chang, and G.-T. Chun. 2000. Enhancement of kasugamycin production by pH shock in batch cultures of Streptomyces kasugaensis. Biotechnol. Prog. 16: 548-552. https://doi.org/10.1021/bp000038f
  12. Kim, C. J., Y. K. Chang, G.-T. Chun, Y.-H. Jeong, and S. J. Lee. 2001. Continuous culture of immobilized Streptomyces cells for kasugamycin production. Biotechnol. Prog. 17: 453-461. https://doi.org/10.1021/bp010020k
  13. Kim, Y. J., J. Y. Song, M. H. Moon, C. P. Smith, S.-K. Hong, and Y. K. Chang. 2007. pH shock induces overexpression of regulatory and biosynthetic genes for actinorhodin production in Streptomyces coelicolor A3(2). Appl. Microbiol. Biotechnol. 76: 1119-1130. https://doi.org/10.1007/s00253-007-1083-9
  14. Kim, Y. J., J. Y. Song, S.-K. Hong, C. P. Smith, and Y. K. Chang. 2008. Effect of pH shock on the secretion system in Streptomyces coelicolor A3(2). J. Microbiol. Biotechnol. 18: 658-662.
  15. Kitada, M. and K. Horikoshi. 1992. Kinetic properties of electrogenic $Na^+/H^+$ antiporter in membrane vesicles from an alkalophilic Bacillus sp. J. Bacteriol. 174: 5936-5940. https://doi.org/10.1128/jb.174.18.5936-5940.1992
  16. Kitada, M., K. Onda, and K. Horikoshi. 1989. The sodium/ proton antiport system in a newly isolated alkalophilic Bacllus sp. J. Bacteriol. 171: 1879-1884. https://doi.org/10.1128/jb.171.4.1879-1884.1989
  17. Kosono, S., Y. Ohashi, F. Kawamura, M. Kitada, and T. Kudo. 2000. Function of a principal $Na^+/H^+$ antiporter, shaA, is required for initiation of sporulation in Bacillus subtilis. J. Bacteriol. 182: 898-904. https://doi.org/10.1128/JB.182.4.898-904.2000
  18. MacNeil, D. J., K. M. Gewain, C. L. Ruby, G. Dezeny, P. H. Gibbons, and T. MacNeil. 1992. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111: 61-68. https://doi.org/10.1016/0378-1119(92)90603-M
  19. Padan, E., E. Bibi, M. Ito, and T. A. Krulwich. 2005. Alkaline pH homeostasis in bacteria; new insights. Biochim. Biophys. Acta 1717: 67-88. https://doi.org/10.1016/j.bbamem.2005.09.010
  20. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, Third Edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  21. Song, J. Y., Y. J. Kim, Y. S. Hong, and Y. K. Chang. 2008. Enhancement of geldanamycin production by pH shock in batch culture of Streptomyces hygroscopicus subsp. duamyceticus. J. Microbiol. Biotechnol. 18: 897-900.
  22. Vara, J., M. Lewandowska-Skarbek, Y.-G. Wang, S. Donadio, and C. R. Hutchinson. 1989. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspor aerythraea (Streptomyce serythreus). J. Bacteriol. 171: 5872-5881. https://doi.org/10.1128/jb.171.11.5872-5881.1989
  23. Yamazaki, H., Y. Takano, Y. Ohnishi and S. Horinouchi. 2003. amfR, an essential gene for aerial mycelium formation, is a member of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseus. Molec. Microbiol. 50: 1173-1187. https://doi.org/10.1046/j.1365-2958.2003.03760.x

Cited by

  1. Heterologous Expression of a Putative $K^+/H^+$ Antiporter of S. coelicolor A3(2) Enhances $K^+$, Acidic-pH Shock Tolerances, and Geldanamycin Secretion vol.23, pp.2, 2011, https://doi.org/10.4014/jmb.1207.07030
  2. Interactions in the Competitive Coexistence Process of Streptomyces sp. and Escherichia coli vol.71, pp.6, 2015, https://doi.org/10.1007/s00284-015-0908-5