DOI QR코드

DOI QR Code

Mannitol Production by Leuconostoc citreum KACC 91348P Isolated from Kimchi

  • Otgonbayar, Gan-Erdene (Department of Food Science and Technology, Chungbuk National University) ;
  • Eom, Hyun-Ju (Department of Food Science and Technology, Chungbuk National University) ;
  • Kim, Beom-Soo (Department of Chemical Engineering, Chungbuk National University) ;
  • Ko, Jae-Hyung (Department of Biotechnology and Food Science, Mongolia International University) ;
  • Han, Nam-Soo (Department of Food Science and Technology, Chungbuk National University)
  • Received : 2011.05.19
  • Accepted : 2011.06.09
  • Published : 2011.09.28

Abstract

Leuconostoc genus, which comprise heterofermentative lactic acid bacteria, reduces fructose to mannitol by recycling intracellular NADH. To evaluate the mannitol productivities of different Leuconostoc species, 5 stock cultures and 4 newly isolated strains were cultivated in MRS and simplified media containing glucose and fructose (1:2 ratio). Among them, L. citreum KACC 91348P, which was isolated from kimchi, showed superior result in cell growth rate, mannitol production rate, and yield in both media. The optimal condition for mannitol production of this strain was pH 6.5 and $30^{\circ}C$. When L. citreum KACC was cultured in simplified medium in a 2 l batch fermenter under optimal conditions, the maximum volumetric productivity was 14.83 $g{\cdot}l^{-1}h^{-1}$ and overall yield was 86.6%. This strain is a novel and efficient mannitol producer originated from foods to be used for fermentation of fructose-containing foods.

Keywords

References

  1. Aarnikunnas J., K. Ronnholm, and A. Palva. 2002. The mannitol dehydrogenase gene (mdh) from Leuconostoc mesenteroides is distinct from other known bacterial mdh genes. Appl. Microbiol. Biotechnol. 59: 665-667. https://doi.org/10.1007/s00253-002-1070-0
  2. Carvalheiro, F., P. Moniz, L. C. Duarte, M. P. Esteves, and F. M. Grio. 2011. Mannitol production by lactic acid bacteria grown in supplemented carob syrup. J. Ind. Microbiol. Biotechnol. 38: 221-227. https://doi.org/10.1007/s10295-010-0823-5
  3. Choi, I. K., S. H. Jung, B. J. Kim, S. Y. Park, J. Kim, and H. U. Han. 2006. Novel Leuconostoc citreum starter culture system for the fermentation of kimchi, a fermented cabbage product. Antonie Van Leeuwenhoek 84: 247-253.
  4. Chung, C. H. and D. F. Day. 2002. Glucooligosaccharides from Leuconostoc mesenteroides B-742 (ATCC 13146): A potential prebiotic. J. Ind. Microbiol. Biotechnol. 29: 196-199. https://doi.org/10.1038/sj.jim.7000269
  5. Ghoreishi, S. M. and Gholami Shahrestani. 2009. Review on engineering mannitol production. Trends Food Sci. Tech. 20: 263-270. https://doi.org/10.1016/j.tifs.2009.03.006
  6. Helanto, M., J. Aarnikunnas, N. von Weymarn, U. Airaksinen, A. Palva, and M. Leisola. 2005. Improved mannitol production by a random mutant of Leuconostoc pseudomesenteroides. J. Biotechnol. 116: 282-294.
  7. Hemme, D. and C. Foucaud-Scheunemann. 2004. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int. Dairy J. 14: 467-494. https://doi.org/10.1016/j.idairyj.2003.10.005
  8. Itoh, Y., A. Tanakara, H. Araya, K. Ogasawara, H. Inabi, Y. Sakamoto, and J. Koga. 1992. Lactobacillus B001 for the manufacture of mannitol, acetic acid, lactic acid. European patent EP 486024.
  9. Kim., Y. S., Y. S. Kim, S. Y. Kim, J. H. Whang, and H. J. Suh. 2008. Application of omija (Schiandra chinensis) and plum (Prunus mume) extracts for the improvement of kimchi quality. Food Control 19: 662-669. https://doi.org/10.1016/j.foodcont.2007.07.006
  10. Monchois, V., M. Remaud-Simeon, R. R. B. Russell, P. Monsan, and R. M. Willemot. 1997. Characterization of Leuconostoc mesenteroides NRRL B-512F dextransucrase (DSRS) and identification of amino acid residues playing a key role in enzyme activity. Appl. Microbiol. Biotechnol. 48: 465-472. https://doi.org/10.1007/s002530051081
  11. Olvera, C., S. Centano-Leija, and A. Lopez-Munguia. 2006. Structural and functional features of fructansucrases present in Leuconostoc mesenteroides ATCC8293. Antonie Van Leeuwenhoek 92: 11-20.
  12. Patra, F., S. K. Tomar, Y. S. Rajput, and R. Singh. 2011. Characterization of mannitol producing strains species. World J. Microbiol. Biotechnol. 27: 933-939. https://doi.org/10.1007/s11274-010-0536-y
  13. Saha, B. C and F. M. Racine. 2010. Biotechnological production of mannitol and its application. Appl. Microbiol. Biotechnol. 86: 1003-1015. https://doi.org/10.1007/s00253-010-2494-6
  14. Soetaert, W. 1990. Production of mannitol with Leuconostoc mesenteroides. Med. Fac. Landbouwwet Rijksuniv. Gent. 55: 1549-1552.
  15. Soetaert, W., K. Buchholz, and E. J. Vandamme. 1995. Production of $_D-mannitol$ and $_D-lactic$ acid by fermentation with Leuconostoc mesenteroides. Agro. Food Ind. HiTech. 6: 41-44.
  16. von Weymarn, N., J. Kristiina, K. J. Kiviharju, S. T. Jaaskelainen, and M. S. Leisola. 2003. Scale-up of a new bacterial mannitol production process. Biotechnol. Prog. 19: 815-821. https://doi.org/10.1021/bp025718s
  17. von Weymarn, N., K. Kiviharju, and M. Leisola. 2002. High-level production of $_D-mannitol$ with membrane cell-recycle bioreactor. J. Ind. Microbiol. Biotechnol. 29: 44-49. https://doi.org/10.1038/sj.jim.7000262
  18. von Weymarn, N. 2002. Process development for mannitol production by lactic acid bacteria. PhD Thesis. Helsinki University of Technology, Finland.
  19. von Weymarn, N., M. Hujanen, and M. Leisola. 2002. Production of $_D-mannitol$ by heterofermentative lactic acid bacteria. Proc. Biochem. 37: 1207-1213. https://doi.org/10.1016/S0032-9592(01)00339-9
  20. Wisselink, H. W., R. A. Weusthuisa, G. Egginka, J. Hugenholtza, and G. J. Grobben. 2002. Mannitol production by lactic acid bacteria: A review. Int. Dairy J. 12: 151-161. https://doi.org/10.1016/S0958-6946(01)00153-4
  21. Yun, J. W and D. H. Kim. 1998. A comparative study of mannitol production by two lactic acid bacteria. J. Ferment. Bioeng. 85: 203-208. https://doi.org/10.1016/S0922-338X(97)86768-2

Cited by

  1. Co-production of biomass and metabolites by cell retention culture of Leuconostoc citreum vol.35, pp.5, 2012, https://doi.org/10.1007/s00449-011-0651-7
  2. 식물성 배지에서 Lactobacillus plantarum의 배양을 위한 배지 최적화 vol.27, pp.6, 2011, https://doi.org/10.7841/ksbbj.2012.27.6.347
  3. 폐배추 추출물을 이용한 Leuconostoc citreum GR1 종균 배양용 최적 배지 및 배양 조건 개발 vol.42, pp.7, 2011, https://doi.org/10.3746/jkfn.2013.42.7.1125
  4. 유산균의 산업적 배양을 위한 미역의 유용성 평가 vol.22, pp.2, 2011, https://doi.org/10.11002/kjfp.2015.22.2.251
  5. Environmental Pressure May Change the Composition Protein Disorder in Prokaryotes vol.10, pp.8, 2011, https://doi.org/10.1371/journal.pone.0133990
  6. Use of autochthonous lactic acid bacteria starters to ferment mango juice for promoting its probiotic roles vol.46, pp.4, 2011, https://doi.org/10.1080/10826068.2015.1045615
  7. Immobilization of Glycoside Hydrolase Families GH1, GH13, and GH70: State of the Art and Perspectives vol.21, pp.8, 2011, https://doi.org/10.3390/molecules21081074
  8. Development of a high-copy plasmid for enhanced production of recombinant proteins in Leuconostoc citreum vol.15, pp.None, 2016, https://doi.org/10.1186/s12934-015-0400-8
  9. Pan-genomic and transcriptomic analyses of Leuconostoc mesenteroides provide insights into its genomic and metabolic features and roles in kimchi fermentation vol.7, pp.None, 2011, https://doi.org/10.1038/s41598-017-12016-z
  10. Complete genome sequence of Leuconostoc suionicum DSM 20241 T provides insights into its functional and metabolic features vol.12, pp.None, 2017, https://doi.org/10.1186/s40793-017-0256-0
  11. Development of Cabbage Juice Medium for Industrial Production of Leuconostoc mesenteroides Starter vol.27, pp.12, 2011, https://doi.org/10.4014/jmb.1708.08050
  12. Plasmid curing resulted in improved heterologous gene expression in Leuconostoc citreum EFEL2700 vol.68, pp.5, 2019, https://doi.org/10.1111/lam.13118
  13. Use of sourdough fermentation to reducing FODMAPs in breads vol.245, pp.6, 2011, https://doi.org/10.1007/s00217-019-03239-7
  14. Mixed starter of Lactococcus lactis and Leuconostoc citreum for extending kimchi shelf-life vol.57, pp.6, 2011, https://doi.org/10.1007/s12275-019-9048-0
  15. Isolation and Characterization of Kimchi Starters Leuconostoc mesenteroides PBio03 and Leuconostoc mesenteroides PBio104 for Manufacture of Commercial Kimchi vol.30, pp.7, 2011, https://doi.org/10.4014/jmb.2001.01011
  16. Development of CRISPR Interference (CRISPRi) Platform for Metabolic Engineering of Leuconostoc citreum and Its Application for Engineering Riboflavin Biosynthesis vol.21, pp.16, 2020, https://doi.org/10.3390/ijms21165614
  17. Application of mannitol producing Leuconostoc citreum TR116 to reduce sugar content of barley, oat and wheat malt-based worts vol.90, pp.None, 2020, https://doi.org/10.1016/j.fm.2020.103464
  18. Sichuan paocai fermented by mixed‐starter culture of lactic acid bacteria vol.8, pp.10, 2020, https://doi.org/10.1002/fsn3.1833
  19. Some Important Metabolites Produced by Lactic Acid Bacteria Originated from Kimchi vol.10, pp.9, 2011, https://doi.org/10.3390/foods10092148
  20. Levan from Leuconostoc citreum BD1707: production optimization and changes in molecular weight distribution during cultivation vol.21, pp.1, 2011, https://doi.org/10.1186/s12896-021-00673-y