DOI QR코드

DOI QR Code

Molecular Characterization of a Novel Vegetative Insecticidal Protein from Bacillus thuringiensis Effective Against Sap-Sucking Insect Pest

  • Sattar, Sampurna (Department of Biotechnology, Indian Institute of Technology Kharagpur) ;
  • Maiti, Mrinal K. (Department of Biotechnology, Indian Institute of Technology Kharagpur)
  • Received : 2011.05.18
  • Accepted : 2011.06.07
  • Published : 2011.09.28

Abstract

Several isolates of Bacillus thuringiensis (Bt) were screened for the vegetative insecticidal protein (Vip) effective against sap-sucking insect pests. Screening results were based on $LC_{50}$ values against cotton aphid (Aphis gossypii), one of the dangerous pests of various crop plants including cotton. Among the isolates, the Bt#BREF24 showed promising results, and upon purification the aphidicidal protein was recognized as a binary toxin. One of the components of this binary toxin was identified by peptide sequencing to be a homolog of Vip2A that has been reported previously in other Bacillus spp. Vip2 belongs to the binary toxin group Vip1-Vip2, and is responsible for the enzymatic activity; and Vip1 is the translocation and receptor binding protein. The two genes encoding the corresponding proteins of the binary toxin, designated as vip2Ae and vip1Ae, were cloned from the Bt#BREF24, sequenced, and heterologously expressed in Escherichia coli. Aphid feeding assay with the recombinant proteins confirmed that these proteins are indeed the two components of the binary toxins, and the presence of both partners is essential for the activity. Aphid specificity of the binary toxin was further verified by ligand blotting experiment, which identified an ~50 kDa receptor in the brush border membrane vesicles of the cotton aphids only, but not in the lepidopteran insects. Our finding holds a promise of its use in future as a candidate gene for developing transgenic crop plants tolerant against sap-sucking insect pests.

Keywords

References

  1. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. C. Struhl. 1995. Short Protocols in Molecular Biology, 3rd Ed. John Wiley & Sons, New York.
  2. Barth, H., D. Blocker, and K. Atkories. 2002. The uptake machinery of clostridial actin ADP-ribosylating toxins-a cell delivery system for fusion proteins and polypeptide drugs. Naunyn Schmiedebergs Arch. Pharmacol. 366: 501-512. https://doi.org/10.1007/s00210-002-0626-y
  3. Barth, H., R. Roebling, M. Fritz, and K. Atkories. 2002. The binary Clostridium botulinum C2 toxin as a protein delivery system. J. Biol. Chem. 277: 5074-5081. https://doi.org/10.1074/jbc.M109167200
  4. Biswas, P. K. 2004. Isolation and characterization of an entomocidal secretory protein from vegetatively growing Bacillus thuringiensis. PhD Thesis. Department of Agriculture, Indian Institute of Technology, Kharagpur.
  5. Blackman, R. L. and V. F. Eastop. 2000. Aphids on World's Crops - An Identification and Information Guide, 2nd Ed. Wiley, New York.
  6. Broza, M. 1986. An aphid outbreak in cotton field in Israel. Parasitica 14: 81-85.
  7. Carlini, C. R. and M. F. Grossi-de-Sa. 2002. Plant toxic proteins with insecticidal properties - A review on their potentialities as bio-insecticides. Toxicon 40: 1515-1539. https://doi.org/10.1016/S0041-0101(02)00240-4
  8. Carozzi, N. and M. Koziel. 1997. Advances in Insect Control: The Role of Transgenic Plants. Taylor & Francis Ltd.
  9. Chrispeels, M. J. and N. V. Raikel. 1991. Lectins, lectin genes and their role in plant defense. Plant Cell 3: 1-9. https://doi.org/10.1105/tpc.3.1.1
  10. Dutta, I., P. Majumdar, P. Saha, K. Ray, and S. Das. 2005. Constitutive and phloem specific expression of Allium sativum leaf agglutinin (ASAL) to engineer aphid (Lipaphis erysimi) resistance in transgenic Indian mustard (Brassica juncea). Plant Sci. 169: 996-1007. https://doi.org/10.1016/j.plantsci.2005.05.016
  11. Elmer, H. S. and O. L. Brawner. 1975. Control of brown soft scale in Central Valley. Citrograph 60: 402-403.
  12. Finey, D. 1971. Probit Analysis, pp 50-80. Cambridge University Press, Cambridge.
  13. Gatehouse, A. M. R., K. S. Powell, W. J. Peumans, E. Van Damme, and J. A. Gatehouse. 1995 Insecticidal properties of plant lectins: Their potential in plant protection, pp 35-38. In A. Pusztai, and S. Bardocz (eds.). Lectins: Biomedical Perspectives. Taylor & Francis, London.
  14. Han, S., J. A. Craig, C. D. Putnam, N. B. Carozzi, and J. A. Tainer. 1999. Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat. Struct. Biol. 6: 932-936. https://doi.org/10.1038/13300
  15. Hilder, V. A., K. S. Powell, A. M. R. Gatehouse, J. A. Gatehouse, L. N. Gatehouse, Y. Shi, et al. 1995. Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Res. 4: 18-25. https://doi.org/10.1007/BF01976497
  16. Hossain, M. A., M. K. Maiti, A. Basu, S. Sen, A. K. Ghosh, and S. K. Sen. 2006. Transgenic expression of onion leaf lectin genes in Indian mustard offers protection against aphid colonization. Crop Sci. 46: 2022-2032. https://doi.org/10.2135/cropsci2005.11.0418
  17. Kanrar, S., J. Venkateswari, P. B. Kirti, and V. L. Chopra. 2002. Transgenic Indian mustard (Brassica juncea) with resistant to the mustard aphid (Lipaphis erysimi Kalt.). Plant Cell Rep. 20: 976-981. https://doi.org/10.1007/s00299-001-0422-z
  18. Leuber, M., F. Orlik, B. Schiffler, A. Sickmann, and R. Benz. 2006. Vegetative insecticidal protein (Vip1Ac) of Bacillus thuringiensis HD201: Evidence for oligomer and channel formation. Biochemistry 45: 283-288. https://doi.org/10.1021/bi051351z
  19. Martinez-Torres, D., S. P. Foster, L. M. Field, A. L. Devonshire, and M. S. Williamson. 1999. A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Insect Mol. Biol. 8: 339-346. https://doi.org/10.1046/j.1365-2583.1999.83121.x
  20. Melander, M., I. Ahman, I. Kamnert, and A. Stromdahl. 2003. Pea lectin expressed transgenically in oilseed rape reduces growth rate of pollen beetle larvae. Transgenic Res. 12: 555-567. https://doi.org/10.1023/A:1025813526283
  21. Oerke, E. C., H. W. Dehne, F. Schonbeck, and A. Weber. 1994. Crop Production and Crop Protection: Estimated Losses in Major Food and Cash Crops. Elsevier, Amsterdam, The Netherlands.
  22. Peumans, W. J. and E. J. M. Van Damme. 1995. Lectins as plant defense protein. Plant Physiol. 109: 347-352. https://doi.org/10.1104/pp.109.2.347
  23. Peumans, W. J. and E. J. M. Van Damme. 1995. The role of lectins in plant defence. Histochem. J. 27: 253-271. https://doi.org/10.1007/BF00398968
  24. Rahbe, Y. and G. Febvay. 1993. Protein toxicity to aphids: An in vitro test on Acyrthosiphon pisum. Entomol. Exp. Appl. 67: 149-160. https://doi.org/10.1111/j.1570-7458.1993.tb01663.x
  25. Rao, K. V., K. S. Rathore, T. K. Hodges, X. Fu, E. Stoger, D. Sudhakar, et al. 1998. Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J. 15: 469-477. https://doi.org/10.1046/j.1365-313X.1998.00226.x
  26. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Plainview, NY.
  27. Sattar, S., P. K. Biswas, M. A. Hossain, M. K. Maiti, S. K. Sen, and A. Basu. 2008. Search for vegetative insecticidal protein from local isolates of Bacillus thuringiensis effective against lepidopteran and homopteran insect pests. J. Biopest. 1: 216-222.
  28. Shi, Y., W. Xu, M. Yuan, M. Tang, and J. Chen. 2004. Expression of vip1/vip2 genes in Escherichia coli and Bacillus thuringiensis and the analysis of their signal peptides. J. Appl. Microbiol. 97: 757-765. https://doi.org/10.1111/j.1365-2672.2004.02365.x
  29. Takada, T., K. Iida, and J. Moss. 1995. Conservation of a common motif in enzymes catalyzing ADP-ribose transfer. J. Biol. Chem. 270: 541-544. https://doi.org/10.1074/jbc.270.2.541
  30. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acid Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  31. Wolfersberger, M. G., P. Luthy, A. Mauren, P. Parenti, V. F. Sacchi, B. Giordana, and G. M. Hanozet. 1987. Preparation and partial characterisation of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). Comp. Biochem. Physiol. A 86: 301-308. https://doi.org/10.1016/0300-9629(87)90334-3

Cited by

  1. Toxins for Transgenic Resistance to Hemipteran Pests vol.4, pp.12, 2012, https://doi.org/10.3390/toxins4060405
  2. Caracterização do gene vip3A e toxicidade da proteína Vip3Aa50 à lagarta-do-cartucho e à lagarta-da-soja vol.48, pp.9, 2013, https://doi.org/10.1590/s0100-204x2013000900005
  3. Plant resistance to aphid feeding: behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding vol.70, pp.4, 2011, https://doi.org/10.1002/ps.3689
  4. Bacterial isolates from Palomena prasina (Hemiptera: Pentatomidae) include potential microbial control agents vol.24, pp.9, 2011, https://doi.org/10.1080/09583157.2014.918584
  5. Draft Genome Sequences of Two Bacillus thuringiensis Strains and Characterization of a Putative 41.9-kDa Insecticidal Toxin vol.6, pp.5, 2014, https://doi.org/10.3390/toxins6051490
  6. Molecular and Insecticidal Characterization of a Novel Cry-Related Protein from Bacillus Thuringiensis Toxic against Myzus persicae vol.6, pp.11, 2011, https://doi.org/10.3390/toxins6113144
  7. Bacillus thuringiensis Toxins: An Overview of Their Biocidal Activity vol.6, pp.12, 2011, https://doi.org/10.3390/toxins6123296
  8. Genomic sequencing identifies novel Bacillus thuringiensis Vip1/Vip2 binary and Cry8 toxins that have high toxicity to Scarabaeoidea larvae vol.99, pp.2, 2011, https://doi.org/10.1007/s00253-014-5966-2
  9. Molecular and insecticidal characterization of Vip3A protein producingBacillus thuringiensisstrains toxic againstHelicoverpa armigera(Lepidoptera: Noctuidae) vol.62, pp.2, 2011, https://doi.org/10.1139/cjm-2015-0328
  10. Characterization ofBacillus thuringiensis(Bacillaceae) Strains Pathogenic toMyzus persicae(Hemiptera: Aphididae) vol.99, pp.4, 2011, https://doi.org/10.1653/024.099.0409
  11. Insecticidal Activity and Histopathological Effects of Vip3Aa Protein from Bacillus thuringiensis on Spodoptera litura vol.26, pp.10, 2016, https://doi.org/10.4014/jmb.1604.04090
  12. Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria vol.80, pp.2, 2011, https://doi.org/10.1128/mmbr.00060-15
  13. The Vip3Ag4 Insecticidal Protoxin from Bacillus thuringiensis Adopts A Tetrameric Configuration That Is Maintained on Proteolysis vol.9, pp.5, 2011, https://doi.org/10.3390/toxins9050165
  14. Characterization of lepidopteran-specific cry1 and cry2 gene harbouring native Bacillus thuringiensis isolates toxic against Helicoverpa armigera vol.15, pp.None, 2011, https://doi.org/10.1016/j.btre.2017.05.001
  15. Immunodetection of the toxic portion of Vip3A reveals differential temporal regulation of its secretion among Bacillus thuringiensis strains vol.125, pp.2, 2011, https://doi.org/10.1111/jam.13775
  16. Bacillus thuringiensis Vip1 Functions as a Receptor of Vip2 Toxin for Binary Insecticidal Activity against Holotrichia parallela vol.11, pp.8, 2011, https://doi.org/10.3390/toxins11080440
  17. Transcriptome profiling analysis of the intoxication response in midgut tissue of Agrotis ipsilon larvae to Bacillus thuringiensis Vip3Aa protoxin vol.160, pp.None, 2011, https://doi.org/10.1016/j.pestbp.2019.06.001
  18. Current Insights on Vegetative Insecticidal Proteins (Vip) as Next Generation Pest Killers vol.12, pp.8, 2011, https://doi.org/10.3390/toxins12080522
  19. Baculovirus Expression and Functional Analysis of Vpa2 Proteins from Bacillus thuringiensis vol.12, pp.9, 2011, https://doi.org/10.3390/toxins12090543
  20. Toxicity evaluation of Aphidicidal crystalliferous toxins from Bacillus thuringiensis strains: a molecular study vol.70, pp.1, 2020, https://doi.org/10.1186/s13213-020-01594-5
  21. Vegetative Insecticidal Protein (Vip): A Potential Contender From Bacillus thuringiensis for Efficient Management of Various Detrimental Agricultural Pests vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.659736
  22. Aphicidal activity of BACILLUS THURINGIENSIS strain AH‐2 against cotton aphid ( APHIS GOSSYPII ) vol.51, pp.4, 2021, https://doi.org/10.1111/1748-5967.12481
  23. Genetic Engineering Approaches for Enhanced Insect Pest Resistance in Sugarcane vol.63, pp.7, 2011, https://doi.org/10.1007/s12033-021-00328-5
  24. Bacillus thuringiensis as microbial biopesticide: uses and application for sustainable agriculture vol.31, pp.1, 2011, https://doi.org/10.1186/s41938-021-00440-3