DOI QR코드

DOI QR Code

Culture-Based and Denaturing Gradient Gel Electrophoresis Analysis of the Bacterial Community Structure from the Intestinal Tracts of Earthworms (Eisenia fetida)

  • Hong, Sung-Wook (Division of Biological Science and Technology, Yonsei University) ;
  • Kim, In-Su (Division of Biological Science and Technology, Yonsei University) ;
  • Lee, Ju-Sam (Division of Biological Science and Technology, Yonsei University) ;
  • Chung, Kun-Sub (Division of Biological Science and Technology, Yonsei University)
  • Received : 2010.09.28
  • Accepted : 2011.01.12
  • Published : 2011.09.28

Abstract

The bacterial communities in the intestinal tracts of earthworm were investigated by culture-dependent and -independent approaches. In total, 72 and 55 pure cultures were isolated from the intestinal tracts of earthworms under aerobic and anaerobic conditions, respectively. Aerobic bacteria were classified as Aeromonas (40%), Bacillus (37%), Photobacterium (10%), Pseudomonas (7%), and Shewanella (6%). Anaerobic bacteria were classified as Aeromonas (52%), Bacillus (27%), Shewanella (12%), Paenibacillus (5%), Clostridium (2%), and Cellulosimicrobium (2%). The dominant microorganisms were Aeromonas and Bacillus species under both aerobic and anaerobic conditions. In all, 39 DNA fragments were identified by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis. Aeromonas sp. was the dominant microorganism in feeds, intestinal tracts, and casts of earthworms. The DGGE band intensity of Aeromonas from feeds, intestinal tracts, and casts of earthworms was 12.8%, 14.7%, and 15.1%, respectively. The other strains identified were Bacillus, Clostridium, Enterobacter, Photobacterium, Pseudomonas, Shewanella, Streptomyces, uncultured Chloroflexi bacterium, and uncultured bacterium. These results suggest that PCR-DGGE analysis was more efficient than the culturedependent approach for the investigation of bacterial diversity and the identification of unculturable microorganisms.

Keywords

References

  1. Aira, M., F. Monroy, and J. Dominguez. 2005. Eisenia fetida (Oligochaeta, Lumbricidae) activates fungal growth, triggering cellulose decomposition during vermicomposting. Microb. Ecol. 52: 738-746.
  2. Albano, H., I. Henriques, A. Correia, T. Hogg, and P. Teixeira. 2008. Characterization of microbial population of 'Alheira' (a traditional Portuguese fermented sausage) by PCR-DGGE and traditional cultural microbiological methods. J. Appl. Microbiol. 105: 2187-2194. https://doi.org/10.1111/j.1365-2672.2008.03947.x
  3. Araya, R., K. Tani, T. Takagi, N. Yamaguchi, and M. Nasu. 2003. Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis. FEMS Microbiol. Ecol. 43: 111-119. https://doi.org/10.1111/j.1574-6941.2003.tb01050.x
  4. Clegg, C. D., R. D. L. Lovell, and P. J. Hobbs. 2003. The impact of grassland management regime on the community structure of selected bacterial groups in soils. FEMS Microbiol. Ecol. 43: 263-270. https://doi.org/10.1111/j.1574-6941.2003.tb01066.x
  5. Cocolin, L., D. Aggio, M. Manzano, C. Cantoni, and G. Comi. 2002. An application of PCR-DGGE analysis to profile the yeast populations in raw milk. Int. Dairy J. 12: 407-411. https://doi.org/10.1016/S0958-6946(02)00023-7
  6. Cocolin, L., N. Innocente, M. Biasutti, and G. Comi. 2004. The late blowing in cheese: A new molecular approach based on PCR and DGGE to study the microbial ecology of the alteration process. Int. J. Food Microbiol. 90: 83-91. https://doi.org/10.1016/S0168-1605(03)00296-4
  7. Daniel, O. and J. M. Anderson. 1992. Microbial biomass and activity in contrasting soil materials after passage through the gut of the earthworm Lumbricus rubellus Hoffmeister. Soil Biol. Biochem. 24: 465-470. https://doi.org/10.1016/0038-0717(92)90209-G
  8. Edwards, C. A. and K. E. Fletcher. 1988. Interactions between earthworms and microorganisms in organic-matter breakdown. Agric. Ecosyst. Environ. 24: 235-247. https://doi.org/10.1016/0167-8809(88)90069-2
  9. Fasoli, S., M. Marzotto, L. Rizzotti, F. Rossi, F. Dellaglio, and S. Torriani. 2003. Bacterial composition of commercial probiotic products as evaluated by PCR-DGGE analysis. Int. J. Food Microbiol. 82: 59-70. https://doi.org/10.1016/S0168-1605(02)00259-3
  10. Furlong, M. A., D. R. Singleton, D. C. Coleman, and W. B. Whitman. 2002. Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl. Environ. Microbiol. 68: 1265-1279. https://doi.org/10.1128/AEM.68.3.1265-1279.2002
  11. Gurtner, C., J. Heyrman, G. Pinar, W. Lubitz, J. Swings, and S. Rolleke. 2000 Comparative analyses of the bacterial diversity on two different biodeteriorated wall paintings by DGGE and 16S rDNA sequence analysis. Int. Biodeterior. Biodegrad. 46: 229-239. https://doi.org/10.1016/S0964-8305(00)00079-2
  12. Hong, Y., T. H. Kim, and Y. E. Na. 2001. Identity of two earthworms used in vermiculture and vermicomposting in Korea. Kor. J. Soil Zool. 17: 185-190.
  13. Jany, J. L. and G. Barbier. 2008. Culture-independent methods for identifying microbial communities in cheese. Food Microbiol. 25: 839-848. https://doi.org/10.1016/j.fm.2008.06.003
  14. Ji, N., B. Peng, G. Wang, S. Wang, and X. Peng. 2004. Universal primer PCR with DGGE for rapid detection of bacterial pathogens. J. Microbiol. Methods 57: 409-413. https://doi.org/10.1016/j.mimet.2004.02.010
  15. Ju, D. H., M. K. Choi, J. H. Ahn, M. H. Kim, J. C. Cho, T. S. Kim, T. S. Kim, C. N. Seong, and J. O. Ka. 2007. Molecular and ecological analyses of microbial community structures in biofilms of a full-scale aerated up-flow biobead process. J. Microbiol. Biotechnol. 17: 253-261.
  16. Jung, Y. R., I. G. Song, J. Y. Kim, S. G. Lee, and Y. J. Kim. 2005. Microbial diversity in the soil damaged by a forest fire. J. Korra 13: 85-90.
  17. Kim, H. J., K. H. Shin, C. J. Cha, and H. G. Hur. 2004. Analysis of aerobic and culturable bacterial community structures in earthworm (Eisenia fetida) intestine. Agric. Chem. Biotechnol. 47: 137-142.
  18. Kim, M. S., J. H. Ahn, M. K. Jung, J. H. Yu, D. H. Joo, M. C. Kim, et al. 2005. Molecular and cultivation-based characterization of bacterial community structure in rice field soil. J. Microbiol. Biotechnol. 15: 1087-1093.
  19. LaPara, T. M., C. H. Nakatsu, L. M. Pantea, and J. E. Alleman. 2002. Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE. Water Res. 36: 638-646. https://doi.org/10.1016/S0043-1354(01)00277-9
  20. Leung, K. and E. Topp. 2001. Bacterial community dynamics in liquid swine manure during storage: Molecular analysis using DGGE/PCR of 16S rDNA. FEMS Microbiol. Ecol. 38: 169-177. https://doi.org/10.1111/j.1574-6941.2001.tb00895.x
  21. Liew, P. W. Y. and B. C. Jong. 2008. Application of rDNA-PCR amplification and DGGE fingerprinting for detection of microbial diversity in a Malaysian crude oil. J. Microbiol. Biotechnol. 18: 815-820.
  22. Liu, W. T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63: 4516-4522.
  23. Lu, C. P. 1992. Pathogenic Aeromonas hydrophila and the fish diseases caused by it. J. Fisheries China 16: 282-288.
  24. Miller, K. M., T. J. Ming, A. D. Schulze, and R. E. Withler. 1999. Denaturing gradient gel electrophoresis (DGGE): A rapid and sensitive technique to screen nucleotide sequence variation in populations. BioTechniques 27: 1016-1030.
  25. Muyzer, G., E. C. De Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
  26. Muyzer, G. and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73: 127-141. https://doi.org/10.1023/A:1000669317571
  27. Nielsen, A. T., W. T. Liu, C. Filipe, L. Grady, S. Molin, and D. A. Stahl. 1999. Identification of a novel group of bacteria in sludge from a deteriorate biological phosphorus removal reactor. Appl. Environ. Microbiol. 65: 1251-1258.
  28. Park, J. S., C. J. Sim, and K. D. An. 2009. Community structure of bacteria associated with two marine sponges from Jeju Island based on 16S rDNA-DGGE profiles. Kor. J. Microbiol. 45: 170-176.
  29. Parkes, R. J., G. Webster, B. A. Cragg, A. J. Weightman, C. J. Newberry, T. G. Ferdelman, et al. 2005. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436: 390-394. https://doi.org/10.1038/nature03796
  30. Parle, J. N. 1963. Micro-organisms in the intestines of earthworms. J. Gen. Microbiol. 31: 1-11. https://doi.org/10.1099/00221287-31-1-1
  31. Possemiers, S., K. Verthe, S. Uyttendaela, and W. Verstraete. 2004. PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol. Ecol. 49: 495-507. https://doi.org/10.1016/j.femsec.2004.05.002
  32. Rantsiou, K., R. Urso, L. Iacumin, C. Cantoni, P. Cattaneo, G. Comi, and L. Cocolin. 2005. Culture-dependent and -independent methods to investigate the microbial ecology of Italian fermented sausages. Appl. Environ. Microbiol. 71: 1977-1986. https://doi.org/10.1128/AEM.71.4.1977-1986.2005
  33. Reeson, A. F., T. Jancovic, M. L. Kasper, S. Rogers, and A. D. Austin. 2003. Application of 16S rDNA-DGGE to examine the microbial ecology associated with a social wasp, Vespula germanica. Insect Mol. Biol. 12: 85-91. https://doi.org/10.1046/j.1365-2583.2003.00390.x
  34. Rondon, M. R., R. M. Goodman, and J. Handelsman. 1999. The earth's bounty: Assessing and assessing soil microbial diversity. Trends Biotech. 17: 403-409. https://doi.org/10.1016/S0167-7799(99)01352-9
  35. Schabereiter-Gurtner, C., G. Pinar, W. Lubitz, and S. Rolleke. 2001. An advanced molecular strategy to identify bacterial communities on art objects. J. Microbiol. Methods 45: 77-87. https://doi.org/10.1016/S0167-7012(01)00227-5
  36. Shin, K. H., H. Yi, J. S. Chun, C. J. Cha, I. S. Kim, and H. G. Hur. 2004. Analysis of the anaerobic bacterial community in the earthworm (Eisenia fetida) intestine. Agric. Chem. Biotechnol. 47: 147-152.
  37. Temmerman, R., I. Scheirlinck, G. Huys, and J. Swings. 2003. Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 69: 220-226. https://doi.org/10.1128/AEM.69.1.220-226.2003
  38. Tripathi, G. and P. Bhardwaj. 2004. Decomposition of kitchen waste amended with cow manure using an epigeic species (Eisenia fetida) and an anecic species (Lampito mauritii). Bioresour. Technol. 92: 215-218. https://doi.org/10.1016/j.biortech.2003.08.013
  39. Toyota, K. and M. Kimura. 1994. Earthworm disseminate a soil-borne plant pathogen, Fusarium oxysporum f. sp. raphani. Biol. Fertil. Soils 18: 32-26. https://doi.org/10.1007/BF00336441
  40. Toyota, K. and M. Kimura. 2000. Microbial community indigenous to the earthworm Eisenia foetida. Biol. Fertil. Soils 31: 187-190. https://doi.org/10.1007/s003740050644
  41. Walter, J., G. W. Tannock, A. Tilsala-Timisjarvi, S. Rodtong, D. M. Loach, K. Munro, and T. Alassatova. 2000. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species specific primers. Appl. Environ. Microbiol. 66: 297-303. https://doi.org/10.1128/AEM.66.1.297-303.2000
  42. Weid, V. D., E. Korenblum, D. Jurelevicius, A. S. Rosado, R. Dino, G. V. Sebastian, and L. Seldin. 2008. Molecular diversity of bacterial communities from subseafloor rock samples in a deep-water production basin in Brazil. J. Microbiol. Biotechnol. 18: 5-14.
  43. Yoshie, S., N. Noda, T. Miyano, S. Tsuneda, A. Hirata, and Y. Inamori. 2001. Microbial community analysis in the denitrification process of saline-wastewater by denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA and the cultivation method. J. Biosci. Bioeng. 92: 346-353. https://doi.org/10.1016/S1389-1723(01)80238-3

Cited by

  1. The role of gut microbiota in the gut-brain axis: current challenges and perspectives vol.4, pp.6, 2013, https://doi.org/10.1007/s13238-013-3017-x
  2. Biological Remediation of the Petroleum and Diesel Contaminated Soil with Earthworms Eisenia Fetida vol.152, pp.None, 2011, https://doi.org/10.1016/j.proeng.2016.07.642
  3. Poikilothermic Animals as a Previously Unrecognized Source of Fecal Indicator Bacteria in a Backwater Ecosystem of a Large River vol.84, pp.16, 2011, https://doi.org/10.1128/aem.00715-18
  4. Vermicomposting: a transformation alternative for rumen content generated in slaughterhouses vol.73, pp.2, 2011, https://doi.org/10.15446/rfnam.v73n2.80104
  5. Centrality of cattle solid wastes in vermicomposting technology – A cleaner resource recovery and biowaste recycling option for agricultural and environmental sustainability vol.268, pp.1, 2011, https://doi.org/10.1016/j.envpol.2020.115688
  6. Activation of biochar through exoenzymes prompted by earthworms for vermibiochar production: A viable resource recovery option for heavy metal contaminated soils and water vol.278, pp.None, 2011, https://doi.org/10.1016/j.chemosphere.2021.130458
  7. Hemicellulolytic bacteria in the anterior intestine of the earthworm Eisenia fetida (Sav.) vol.806, pp.p4, 2011, https://doi.org/10.1016/j.scitotenv.2021.151221