A New Method Using Geometric Invariability for Lens Distortion Correction

기하학적 불변성을 이용한 새로운 렌즈 보정 기법

  • Cao, Van-Toan (School of Electrical Engineering, University of Ulsan) ;
  • Cho, Sang-Bock (School of Electrical Engineering, University of Ulsan)
  • Received : 2011.04.06
  • Published : 2011.11.25

Abstract

Most of cameras being used in practice induce lens distortion; the amount of distortion depends on the specific applications as well as the camera cost. Up to now, many methods of lens distortion correction have relied on invariant properties of projective geometry to find distortion parameters. A common property is "the straight line in scene is straight line in image". However, if the straight lines are also parallel together, the previous works have missed this restriction in determining lens distortion parameters. In this paper, we propose a method that leads to guarantee of the restrictions simultaneously for the determination. Therefore, corrected image will close to an ideal image taken by the pinhole camera model. The effectiveness of the proposed method is verified by our experiments on both synthetic images and real images.

일반적으로 실제 사용되는 카메라들은 렌즈 왜곡이 존재하며, 렌즈왜곡의 정도는 카메라의 가격뿐만 아니라 특정 용도에 의해 달라진다. 현재까지의 많은 렌즈 왜곡 보정기법들은 왜곡 변수를 찾기 위해 투영 기하학의 불변량 속성을 기반으로 한 것으로, "물체의 직선은 이미지에서의 직선"이라는 상식에서 출발한다. 하지만, 평행선인 경우 이전의 연구들은 렌즈 왜곡 변수를 결정하는데 제약이 있다. 본 논문에서는 렌즈왜곡 변수를 결정할 때 동시에 평행선 유지를 보증할 수 있는 방법을 제안함으로써, 핀홀 카메라 모델을 이용하여 투영된 이미지와 실제 이미지가 근접한 결과를 얻게 된다. 실제 이미지와 제안된 기법을 사용한 보정이미지를 비교하여 그 효율성을 입증하였다.

Keywords

References

  1. Brown DC. Decentering distortion of lenses. Photogrammetric Engineering, 32(3):444-462, May 1966.
  2. Brown DC. Close-range camera calibration. Photogrammetric Engineering, 37(8):855-866, Aug 1971.
  3. B. Prescott and G. F. McLean, "Line-Based Correction of Radial Lens Distortion," Graphical Models and Image Processing, vol. 59, pp. 39-47, 1997. https://doi.org/10.1006/gmip.1996.0407
  4. F. Devernay and O. Faugeras, "Straight lines have to be straight," Machine Vision and Applications, vol. 13, pp. 14-24, 2001. https://doi.org/10.1007/PL00013269
  5. H. Farid and A. C. Popescu, "Blind removal of lens distortion," J. Opt. Soc. Am. A, vol. 18, pp. 2072-2078, 2001. https://doi.org/10.1364/JOSAA.18.002072
  6. J.A. Nelder and R. Mead, "A simplex method for function minimization," Computer Journal, vol. 7, no. 4, pp. 308-313, Jan. 1965. https://doi.org/10.1093/comjnl/7.4.308
  7. J. Heikkila and O. Silven, "Calibration procedure for short focal length off-the-shelf CCD cameras," in Pattern Recognition, 1996., Proceedings of the 13th International Conference on,vol.1, pp. 166-170, 1996.
  8. K. Sirisantisamrid, et al., "A simple technique to determine calibration parameters for coplanar camera calibration," in TENCON 2004. 2004 IEEE Region 10 Conference, vol. 1, pp. 677-680, 2004.
  9. M. T. Ahmed and A. A. Farag, "Differential methods for nonmetric calibration of camera lens distortion," in Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, vol.2, pp. II-477-II-482, 2001.
  10. M. Ahmed and A. Farag, "Nonmetric calibration of camera lens distortion: differential methods and robust estimation," Image Processing, IEEE Transactions on, vol. 14, pp. 1215-1230, 2005. https://doi.org/10.1109/TIP.2005.846025
  11. M. Yan and Z. Hanqi, "What you see is what you get [self-calibrating camera lens distortion]," Robotics & Automation Magazine, IEEE, vol. 11, pp. 123-127, 2004. https://doi.org/10.1109/MRA.2004.1371617
  12. R. Cucchiara, et al., "A Hough transform-based method for radial lens distortion correction," in Image Analysis and Processing, 2003.Proceedings. 12th International Conference on, pp. 182-187, 2003.
  13. R. Sagawa, et al., "Calibration of lens distortion by structured-light scanning," in Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on, pp. 832-837, 2005.
  14. R. Tsai, "A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses," Robotics and Automation, IEEE Journal of, vol. 3, pp. 323-344, 1987.
  15. S. Graf and T. Hanning, "Analytically solving radial distortion parameters," in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE computer Society Conference on, vol. 2, pp. 1104-1109, 2005.
  16. T. Nave and J. M. Francos, "Global featureless estimation of radial distortions," in Signal Processing and Communication Systems, 2008. ICSPCS 2008. 2nd International Conference on, pp. 1-11, 2008.
  17. W. Yu, "Image-based lens geometric distortion correction using minimization of average bicoherence index," Pattern Recognition, vol. 37, pp. 1175-1187, 2004. https://doi.org/10.1016/j.patcog.2004.01.001
  18. Z. Wentao, et al., "A high-precision camera operation parameter measurement system and its application to image motion inferring," Broadcasting, IEEE Transactions on, vol. 47, pp. 46-55, 2001. https://doi.org/10.1109/11.920780