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( Generation of Dynamic Routing Information by using Balanced
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Abstract

In mobile ad hoc networks where the communication nodes are moving around, one may perform dynamic routing that
can increase the total communication throughput of the network, by determining the ranks of pairs of nodes according to
their communication throughput. The balanced Howell rotation is a tournament design scheme for bridge games. This
paper explains that the balanced Howell rotation can be applied to enhance the overall communication throughput of mobile

HA

ad hoc networks, and proposes and proves the condition under which the balanced Howell rotations may exist.

Keywords : mobile ad hoc networks, inter-node communication, balanced Howell rotations, Number theory,

twin prime powers

I. Introduction

Mobile ad hoc networks are communication
environments that change dynamically in time. For
the around during the
communications, should be able to

handle problems like dynamic routing. In such an

nodes are moving

the network

environment, it can be a help to know which pairs of
nodes are in better conditions of communications. So,

one may need to design a fast procedure to find the
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wanted pairs effectively. For such a procedure, one
may introduce the use of balanced Howell rotation
(BHR). When communications are going on over the
network, one may perform a tournament, during a
given time interval, to determine the ranks of pairs of
nodes according to their communication throughput.
In routing, by constructing communication paths
with the results of the tournament, one may expect
to improve the overall communication throughput of
the network.

In the main part of this paper, the mathematical
properties that ensure BHR can be constructed are
proposed and proved. Consider a tournament of
n=2k teams and n—1 boards. On each board 4,

the n teams are divided into n ordered pairs
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(ays b;), 7=1,2,--,k. The two teams aj;

and b;;
are said to oppose each other on board 7 and two
teams a;; and a; (or b;; and b, ) are said to compete
with each other. A balanced Howell rotation of order
n, denoted by BHR(n), is such a tournament
satisfying the following conditions.

(a) Each team opposes every other team exactly
once.

(b) Each team competes with every other team
exactly k— 1 times.

The balanced Howell rotation has applications in
the bridge tournament. Parker and Mood"!  first
bought this design to one’s attention. They proved
that if BHR(n) exists then n=0(mod4). So far,
the existence of BHR(n) has been known for the
following n:

(1) n—1 is a prime power (Berlekamp and Hwang
21y

(2) n/2—1 is an odd prime power at least 7

(Schellenberg™, Hanner'™).,

(3) n=PQ+ 1where P=p" andQ=¢’ are two
prime powers with P+2=@Q and ¢= 3 (Du and
Hwang"™).

In this note, we study BHR(PQ+ 1) in the case
g# 3 and prove that BHR(PQ+1) always exists
for PQ < 10%°.

Strong starters and skew starters
Particularly,
balanced starters and symmetric skew balanced
starters® ™

67 are in wide

use for combinatorial designs. skew
can be used in constructing completely
balanced Howell rotations. Du and Hwang[‘r)] has
proved, with the properties of a Galois domain which
is a direct sum of two Galois fields, that BHR(n)
exists when n=p"¢® where p and ¢ = 3 are primes
and ¢ =p" +2. Du and Hwang” has given an
approach to construct symmetric skew balanced
starters on n, where n is of the form: n=2"k+1
a prime power with k odd. Also, showed that, for n
of the above form with k> 9 - 23" there exists a
skew balanced starter. Note that a

symmetric skew balanced starter on n, where n is

symmetric
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odd, can be used to construct complete balanced
Howell rotations for n and 2(n+1), and also for
n+1, n= 3(mod4). As let

where well,

n=2"k+1 be an odd prime power where m > 2
and k is an odd number. The existence of symmetric
skew balanced starters for GF(n) is proved, by Du
and Hwangm, for m > 2 and k> 3.

The BHR, when multiple teams are playing games,
is defined to determine the winner reasonably. In
each game of a tournament, situations should be
determined by the players, and the results should not
be predicted by any means. In terms of equity, all
players should be assigned to play the same number
of games. The BHR, satisfying such fundamental
matters, is defined so that players should have equal
opportunities. In the next section, an example of BHR
is shown to explain the meanings of the words and
components, and the relationships among those.
Section @I explains how the BHR can be applied to
determine the ranks of pairs according to their
throughput over the network. In section IV, some
mathematical conditions, under which BHR can be
constructed, are suggested and proved. Section V
concludes with the mention on the effect of the
results and further study.

II. Related Work

‘Games on Four Tables’ (Table 1) is an example of
BHR, by General Gruentherm, which is reproduced
here for an illustration purpose, and by which eight
teams can play duplicate bridge game on four tables.
As shown below, to run the seven boards, seven
rounds are going on concurrently on the four tables.
'Board and Games’ (Table 2) is from Table 1, where
there are four games in each board. As shown in
Table 2, the contestants of each team are determined
in each board. For example, in board 1 the 8th team
plays a game with the 1st team. However, the 1st
team is not the contestant of the 8th team. The 8th
team gets a relative score to those of 3rd, 4th, 5th

teams, which are on the left side in the same board.
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Table 1. Games on Four Tables. Table 3. contestants in each board.
round 1 12131451617 team contesting teams in each board
8 8 8 8 8 8 board | board | board | board | board | board | board
tablel | EAS s1 T | 2|3 | 4| 5|6 | 7
1 2 3 4 5 6 7 7 2 3 ] ] ] 7
board | 1 | 2 | 314|567 te"i‘m 2 3 2 6 7 2 6
" 6 7 1 2 3 4 5 6 7 4 7 2 3 5
table2 | |3 1456|712 . NN EEERE
board | 4 | 5| 6] 7] 1] 2]3 egm 7 3 4 3 7 1 3
; 2 3 4 5 6 7 1 6 7 1 5 1 3 4
table3 | |71 ]2 3]4]|5]6 wml 8121225 ]s8]s3
board 6 7 1 2 3 4 5 3 4 1 4 5 4 1 2
4 5 6 7 1 2 3 5 7 1 2 6 2 4
tabled [ |5 |6 |71 ]2]3]|4 el 818335 [6]s
board 71123 |4|5]|6 4 3 5 2 5 6 5 2
S s A 5 16 |1 2 | 3| 7] 3
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Table 2. Board and Games. tegm g i g é é 67i g
board games 4 6 7 2 3 4 1
1 81 37 42 56 eam| 1 8 | 8 | 8 | 5 | 5 |7
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3 83 52 6,4 71
4 8,4 6,3 75 12 team % 2 8 8 8 6 6
5 85 74 16 23 (N é 2 ? % 2 é
6 86 15 27 34 ; . - S - N >
2 1 4
! 87 i 3, D el g s |6 | 7| 1| 2|3
/ \ / N ; \ ; 2 5 6 7 1 2 3 4
| playing ! playing . | playing ; ! playing .
i__pair i G i par | S Cl
board teams . .
| 81 | 37 | 42 | 56 II. Determining the Ranks of Pairs
One may apply the BHR to the problem of
@ @ determining the ranks of the pairs of nodes, over the
a8 1. @IIAet ZEA Y o N
Fig. 1. Partner and Contestant. CQ &
O £ where competition b

That is, the 8th team directly contests with 3rd, 4th,
5th teams in board 1. The play partner and the
contestants are determined by Table 2, in such a
way.

With this method of scoring, the possibility of
scoring by a lucky chance can be reduced much. One
of the important points, from this example, is that
each team contests equally three times with other

different teams.
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ad hoc network during the current time interval,
according to the communication throughput between
the two nodes of the pairs.

A team of a BHR corresponds to a pair of nodes
in the network. The game of the two teams in BHR
corresponds to the ‘sending and receiving’ an amount
of signals concurrently and continuously, in a short
given time interval, along each of the two paths of
two pairs, which corresponds to the two teams, of
nodes in the network. That is, the two nodes a and
b in the pair (a,b), which is regarded as a team in
a BHR, send and receive signals with each other,
while the two in (¢, d) do the same. While the tries,
of the two pairs, of ‘sending and receiving’ signals
are influencing each other, the pair with better
may produce higher
throughput. As in a BHR, the throughput of (a,b) is

not compared with that of (e, d), instead it is

conditions communication

compared relatively with the throughputs of the other
three pairs in the same board, and then evaluated to
a score. In the example of 'Games on Four Tables,’
the games from four different boards are performed
concurrently on the four tables to reduce the overall
time. However, over the network, the ‘sending and
receiving’s from boards are performed just serially.
The nodes, in the two pairs, are ‘sending and
receiving’ signals in a given time interval, by the
programs, to run the prescribed procedure, which are
installed in each node. The results of ‘sending and
receiving’ are saved in each node, and to be used as
routing information after the procedure is completed.

As shown next by the mathematical proof, one can
not apply BHR to arbitrarily many pairs of nodes in
a network, because a BHR can be constructed when
the number of teams meets some conditions.
Actually,

Therefore,

the conditions are hard to be met.
one should partition the network by
locations so that the number of partitions meets the
condition, by which the BHR can be constructed. One
may properly assume that the nodes within a
near-by area — inside a partition— practically have

almost the same conditions of communications, as
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long as all the nodes have the same architecture. So,
one may choose a node from a partition so that it
should represent the nodes in there. As for the
example of 8 teams in a BHR, one may divide given
network into 8 partitions. Then, 'the pair of nodes’
can be extended as 'the pair of partitions’. Now it
should be considered how one may partition the
network so that the above assumed matter can be
properly accepted. To know which are located near to
one node, there are many messaging protocols, the
use of GPS, and other techniques. Though each
technique may give out different partitions, geometric
vicinity of nodes may generally help to compromise
the differences. That is, even when two nodes are
fall into two different partitions, the two partitions
will behave more similarly if the two nodes are
closer each other.

Now regarding a pair of partitions as a team in a
BHR, one may apply the BHR to determine the ranks
among the communicating pairs. Once the upper
ranked pairs of partitions are chosen, any pair of
nodes from the partition—pairs will be taken into the
backbone of the route over the current network. To
determine the nodes of partitions, one may proceed as

shown in Fig. 4. One node, say n Py which is in the

backbone of current route, is chosen to run the
partitioning program. Then the program calls all
other nodes for their GPS’s. After all nodes have

sent their current GPS’s to np, the program runs as

follows. With the number of total nodes and the
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number n of BHR, the program may know the size

p, of a partition. Then, by the distances from the
GPS's of other nodes, n can determine to include its
near-by neighbor nodes one by one into its partition
until the number of nodes reaches p,. This group of
nodes becomes the first partition, where n P, becomes

the

representative n p, One may proceed the same

its representative. By determining second
procedure to know the second partition, etc. The

second representative n p, can reasonably  be

determined by choosing the next closer node to the
last chosen node of the first partition.

Once a node is notified to be a representative, it
may get into the tournament when the time comes.
The tournament can be performed periodically or by
demands from nodes in a troubled area: the area of

poor communication conditions.
IV. The Existence of BHR

Theorem 1 Let n—1 be a product of twin prime
powers, ie, n=PQ+1 where P=p" and Q= ¢’
with P+2= @ for some primes p and ¢. Then
BHR(n) exists unless a is an odd number at least
3, 8 is an even number at least 2 and ¢= 3.

Proof. To prove this theorem, it suffices to prove
the existence of BHR(PQ+1) in the following

three cases.

gt 38 2*E FE 44 aEe
Case 1. ¢= 3.
Case 2. ¢=3 and 3 is odd.
Case 3. ¢q=3, B is even and o = 1.
Case 4. ¢q=3, [ is even and « is even.

Case 1 has been proved by Du and Hwang[S] by
using Galois domain®, The following lemma can be
found in their proof.

Lemma 1 Let & be a generator of Galois field
GF(p®™) of order p* and y a generator of Galois

field GF(q®) of order ¢’. Suppose that k, m and 2
satisfy

2 +1=2", 0<m< (P—2)/2, 2=y

where is ether 0 or 1. Then

BHR(PQ+1) exists.
To prove the existence of BHR(PQ+1) in Case

2, we first prove the following lemma.

zZ—m

Lemma 2 Let p® =1(mod8) and = a generator
of GF(p®). Then —2= 2" for some even number k.
Proof. GF(p®) has a unique subfield of order p.
Denote u=p* '+p* ?+---+1. Then z" is a
of the subfield of p. If
p=1(mod8), then 2 is a quadratic residue modulo

generator order

p (see™). Since z" is a generator of GF(p),
2w , 2k u + p“; 1
2=z""" for some k. Hence, —2==x
p'—1
4 .
where 2k u + 1s an even number.

Next, we assume p1(mod8). Note that p is
odd 32=1(mod8), 5°=1(mod8)
72 =1 (mod8). Thus,

and and

o _ {p (mod8), ifaisodd, }
1 (mod8), ifaiseven

Since p® = 1(mod8), o must be even. Therefore,
u 1s an even number. Since —2 is an element in the
subfield GF(p), we have —2=2z"" for some k'
]

where k'u is an even number.

In Case 2, since (3 is odd,

B-1

p"=3"-2=3x9 * —2=1(mod8)
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By Lemma 2, there exists k such that 22 =—2.
Note that —1=2(mod3). Thus, GF(3"),
2=y "V Choose z=(P+1)/2=(Q—1)/2,
m=(P—1)/2.  Then  2*+1=—1=2a",
0<m< %, 2=1y9y" and z—m = 1. By Lemma
1, BHR(PQ+1) exists.

In Case 3, PQ+1=pp+2)+1=(p+1)*. To
prove the existence of BHR(PQ+1) in this case,

we need a multiplication theorem given by Du and
[10]

in

Hwang . To describe this theorem, let us introduce
the concept of partitionable starter.

Let G be an additive Abelian group of order
g(g=3(mod4)) and G  the
elements. A partitionable starter of G is a collection
of (g—1)/2

i=1,2,..,(g—1)/2, of elements in G satistying

set of nonzero

disjoint  ordered pairs  (x;¥;),

the following conditions.
(a) Every element of G . appears in {i (z;—y,)l
i=1,2,...,(¢g—1)/2} exactly once.
() These (¢g—1)/2 pairs can be divided into two
S, and 5 such  that

sub-collections sets

|55|= 15|+ 1, and {0} U {|z is an element in a pair
of S} and {z|z is an element in a pair of S,} are
supplementary difference set (e, every nonzero
element appears in the differences *—y where =z
and y are in the same set among the two sets

equally often.).
[10]

Du and Hwang " proved the following.

Lemma 3 If p is a prime with p=—1 (mod8)
and -2 is a generator of GF(p), then the
partitionable starter of Z, exists.

Lemma 4 If BHR(m), BHR(n) and the

partitionable starter of a Abelian group G of order
n—1 exist, then BHR(mn) exists.

In Case 3, since [ is even, p= 30 —2=
—1 (mod8). Note that p+2=3". This implies that
-2 is a generator of GF(p) (see™). Therefore, by
Lemma 3, the partitionable starter of order p exists.
From Berlekamp and Hwang”, BHR(p+1) exists.
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Table 4. Factorization of 97 ~ 2,

B |gf 2 factorization

1 |7 7

2 1719 9

3 |727 727

4 16559 7 - 937

5 59047 137 - 431

6 531439 113 - 4703

T | 4782967 7 - 17 - 40193
8 43046719 89 - 483671

9 | 387420487 23 - 3617 - 4567
10 | 3486784399 7 - 498112057
11 | 31381059607 31381059607

By Lemma 4, BHR((p+1)?) exists.
Finally, we indicate that Case 4 actually does not
exist. In fact, since § is even, we have

p"=3"—2=—1 (modg).

By the same argument in the proof of Lemma 2,
we know that

a_ { p (mod8), ifaisodd, }
p 1 (mod8), ifaiseven

0J

We conjecture that there does not exist a prime p

Therefore, o is odd.

such that an,H +2=9" for some positive integers
o’ and 3. In fact, we have verified it for 5" < 10.
The following Table 4 shows the factorizations of
97 2 1< 8 <11. This fact
following corollary.

for implies the

Corollary 1 If n—1 is a product of twin prime

power and n < 10?°, then BHR(n) exists.

V. Conclusion

It is concluded that BHR(n) exists when n—1 is

a product of twin prime number and n < 10%.

Unfortunately, it is implied that the conclusion can
not be a practically satisfying condition in using the

BHR for ranking the pairs of nodes according to their
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communication throughputs because the density of
twin primes for the number of nodes in a normal
shall very
Therefore, the use of BHR(n) is extended by
introducing the partitions, which are the gatherings of

mobile network normally be low.

near-by nodes on the network. That is, n of

BHR(n) becomes the number of the partitions on
the network, where the number can be varied flexibly
depending upon the variable size of the partitions.
Besides, since the BHR itself is a reasonable way of
making a tournament to quickly rank the pairs in
dynamic communication environments, it would be a
challenge to discover other properties or methods,
which can widen the practical use of the BHR in

similar communication environments.
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