DOI QR코드

DOI QR Code

A mixture of Salacia oblonga extract and IP-PA1 reduces fasting plasma glucose (FPG) and low-density lipoprotein (LDL) cholesterol levels

  • Nakata, Kazue (Department of Nutritional Science, Okayama Prefectural University) ;
  • Taniguchi, Yoshie (Non-profit Organization, Linking Setouchi Innate Immune Network) ;
  • Yoshioka, Noriko (Non-profit Organization, Linking Setouchi Innate Immune Network) ;
  • Yoshida, Aya (Non-profit Organization, Linking Setouchi Innate Immune Network) ;
  • Inagawa, Hiroyuki (Department of Integrated and Holistic Immunology, Faculty of Medicine, Kagawa University) ;
  • Nakamoto, Takeru (Non-profit Organization, Linking Setouchi Innate Immune Network) ;
  • Yoshimura, Hiroshi (Non-profit Organization, Linking Setouchi Innate Immune Network) ;
  • Miyake, Shin-Ichiro (Miyake Medical Institute) ;
  • Kohchi, Chie (Department of Integrated and Holistic Immunology, Faculty of Medicine, Kagawa University) ;
  • Kuroki, Masahide (Faculty of Medicine, School of Medicine, Fukuoka University) ;
  • Soma, Gen-Ichiro (Department of Integrated and Holistic Immunology, Faculty of Medicine, Kagawa University)
  • Received : 2011.05.23
  • Accepted : 2011.08.31
  • Published : 2011.10.31

Abstract

At present, lifestyle-related diseases are one of the most critical health issues worldwide. It has been reported that lipopolysaccharide derived from a Gram-negative bacteria (IP-PA1) symbiotic with wheat exhibited several advantageous biological effects, such as the reduction of plasma glucose levels in NOD mice and low-density lipoprotein (LDL) levels in WHHL rabbits. In this study, the beneficial effects on plasma glucose and lipids of a tea (SI tea) consisting of IP-PA1 and Salacia (which contains an inhibitor of ${\alpha}$-glucosidase) were investigated in the KK-Ay/TaJcl type 2 diabetic model mice and in human subjects with premetabolic syndrome in a double-blind, randomized study. S1 tea significantly decreased plasma glucose levels in KK-Ay/TaJcl mice. A clinical trial of SI tea was performed with 41 subjects between the ages of 40 and 69, who belonged either to a high plasma glucose group (HG: FPG 100-125 mg/dl) or to a hyperlipidemia group (HL: TG ${\geq}$ 150 mg/dl, or LDL ${\geq}$ 120 mg/dl, or HDL <40 mg/dl). These subjects ingested either Salacia without IP-PA1 (the control) or SI tea. Blood samples were collected at 0, 30, and 60 days after initiating SI tea treatment, and were measured for FPG, HbA1c, TG, LDL, and HDL. These results showed that SI tea reduced FPG and HbA1c more rapidly than the control in the HL group, and also significantly improved LDL and HDL levels in the HG group. Thus, SI tea may be helpful in preventing lifestyle-related diseases.

Keywords

References

  1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:1047-53. https://doi.org/10.2337/diacare.27.5.1047
  2. Adachi M, Yamaoka K, Watanabe M, Nishikawa M, Hida E, Kobayashi I, Tango T. Effects of lifestyle education program for type 2 diabetes patients in clinics: study design of a cluster randomized trial. BMC Public Health 2010;10:742. https://doi.org/10.1186/1471-2458-10-742
  3. Hamdy O, Porramatikul S, Al-Ozairi E. Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev 2006;2:367-73. https://doi.org/10.2174/1573399810602040367
  4. Wolf BW, Weisbrode SE. Safety evaluation of an extract from Salacia oblonga. Food Chem Toxicol 2003;41:867-74. https://doi.org/10.1016/S0278-6915(03)00038-3
  5. Yoshikawa M, Morikawa T, Matsuda H, Tanabe G, Muraoka O. Absolute stereostructure of potent alpha-glucosidase inhibitor, Salacinol, with unique thiosugar sulfonium sulfate inner salt structure from Salacia reticulata. Bioorg Med Chem 2002;10:1547-54. https://doi.org/10.1016/S0968-0896(01)00422-9
  6. Ghavami A, Johnston BD, Pinto BM. A new class of glycosidase inhibitor: synthesis of salacinol and its stereoisomers. J Org Chem 2001;66:2312-7. https://doi.org/10.1021/jo001444g
  7. Yoshikawa M, Murakami T, Yashiro K, Matsuda H. Kotalanol, a potent alpha-glucosidase inhibitor with thiosugar sulfonium sulfate structure, from antidiabetic ayurvedic medicine Salacia reticulata. Chem Pharm Bull (Tokyo) 1998;46:1339-40. https://doi.org/10.1248/cpb.46.1339
  8. Williams JA, Choe YS, Noss MJ, Baumgartner CJ, Mustad VA. Extract of Salacia oblonga lowers acute glycemia in patients with type 2 diabetes. Am J Clin Nutr 2007;86:124-30.
  9. Deguchi Y, Miyazaki K. Anti-hyperglycemic and anti-hyperlipidemic effects of guava leaf extract. Nutr Metab (Lond) 2010;7:9. https://doi.org/10.1186/1743-7075-7-9
  10. Blonde L. Current antihyperglycemic treatment strategies for patients with type 2 diabetes mellitus. Cleve Clin J Med 2009;76 Suppl 5:S4-11.
  11. Akase T, Shimada T, Harasawa Y, Ikeya Y, Nagai E, Iizuka S, Nakagami G, Iizaka S, Sanada H, Aburada M. Preventive effects of Salacia reticulata on obesity and metabolic disorders in TSOD mice. Evid Based Complement Alternat Med 2009. [Epub ahead of print].
  12. Kishino E, Ito T, Fujita K, Kiuchi Y. A mixture of the Salacia reticulata (Kotala himbutu) aqueous extract and cyclodextrin reduces the accumulation of visceral fat mass in mice and rats with high-fat diet-induced obesity. J Nutr 2006;136:433-9.
  13. Kohchi C, Inagawa H, Nishizawa T, Yamaguchi T, Nagai S, Soma G. Applications of lipopolysaccharide derived from Pantoea agglomerans (IP-PA1) for health care based on macrophage network theory. J Biosci Bioeng 2006;102:485-96. https://doi.org/10.1263/jbb.102.485
  14. Tsukioka D, Nishizawa T, Miyase T, Achiwa K, Suda T, Soma G, Mizuno D. Structural characterization of lipid A obtained from Pantoea agglomerans lipopolysaccharide. FEMS Microbiol Lett 1997;149:239-44. https://doi.org/10.1111/j.1574-6968.1997.tb10335.x
  15. Inagawa H, Nishizawa T, Tsukioka D, Suda T, Chiba Y, Okutomi T, Morikawa A, Soma GI, Mizuno D. Homeostasis as regulated by activated macrophage. II. LPS of plant origin other than wheat flour and their concomitant bacteria. Chem Pharm Bull (Tokyo) 1992;40:994-7. https://doi.org/10.1248/cpb.40.994
  16. Braun-Fahrlander C, Riedler J, Herz U, Eder W, Waser M, Grize L, Maisch S, Carr D, Gerlach F, Bufe A, Lauener RP, Schierl R, Renz H, Nowak D, von Mutius E; Allergy and Endotoxin Study Team. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 2002;347:869-77. https://doi.org/10.1056/NEJMoa020057
  17. Cebra JJ. Influences of microbiota on intestinal immune system development. Am J Clin Nutr 1999;69:1046S-1051S.
  18. Uribe A, Alam M, Midtvedt T, Smedfors B, Theodorsson E. Endogenous prostaglandins and microflora modulate DNA synthesis and neuroendocrine peptides in the rat gastrointestinal tract. Scand J Gastroenterol 1997;32:691-9. https://doi.org/10.3109/00365529708996520
  19. Stappenbeck TS, Hooper LV, Gordon JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A 2002;99:15451-5. https://doi.org/10.1073/pnas.202604299
  20. Marshall JC. Lipopolysaccharide: an endotoxin or an exogenous hormone? Clin Infect Dis 2005;41 Suppl 7:S470-80.
  21. Miao Y, Zhou J, Chen C, Shen D, Song W, Feng Y. In vitro adsorption revealing an apparent strong interaction between endophyte Pantoea agglomerans YS19 and host rice. Curr Microbiol 2008;57:547-51. https://doi.org/10.1007/s00284-008-9240-7
  22. Asis CA Jr, Adachi K. Isolation of endophytic diazotroph Pantoea agglomerans and nondiazotroph Enterobacter asburiae from sweetpotato stem in Japan. Lett Appl Microbiol 2004;38:19-23. https://doi.org/10.1046/j.1472-765X.2003.01434.x
  23. Pusey PL. Effect of nectar on microbial antagonists evaluated for use in control of fire blight of pome fruits. Phytopathology 1999;89:39-46. https://doi.org/10.1094/PHYTO.1999.89.1.39
  24. Stockwell VO, Johnson KB, Sugar D, Loper JE. Antibiosis contributes to biological control of fire blight by Pantoea agglomerans strain Eh252 in orchards. Phytopathology 2002;92:1202-9. https://doi.org/10.1094/PHYTO.2002.92.11.1202
  25. Iguchi M, Inagawa H, Nishizawa T, Okutomi T, Morikawa A, Soma GI, Mizuno D. Homeostasis as regulated by activated macrophage. V. Suppression of diabetes mellitus in non-obese diabetic mice by LPSw (a lipopolysaccharide from wheat flour). Chem Pharm Bull (Tokyo) 1992;40:1004-6. https://doi.org/10.1248/cpb.40.1004
  26. Okutomi T, Nishizawa T, Inagawa H, Takano T, Morikawa A, Soma G, Mizuno D. Homeostasis as regulated by activated macrophage. VII. Suppression of serum cholesterol level by LPSw (a lipopolysaccharide from wheat flour) in WHHL (Watanabe heritable hyperlipidemic) rabbit. Chem Pharm Bull (Tokyo) 1992;40:1268-70. https://doi.org/10.1248/cpb.40.1268
  27. Lu Q, Bjorkhem I, Wretlind B, Diczfalusy U, Henriksson P, Freyschuss A. Effect of ascorbic acid on microcirculation in patients with Type II diabetes: a randomized placebo-controlled cross-over study. Clin Sci (Lond) 2005;108:507-13. https://doi.org/10.1042/CS20040291
  28. Earnest CP, Wood KA, Church TS. Complex multivitamin supplementation improves homocysteine and resistance to LDL-C oxidation. J Am Coll Nutr 2003;22:400-7.
  29. Im R, Mano H, Nakatani S, Shimizu J, Wada M. Safety evaluation of the aqueous extract Kothala himbutu (Salacia reticulata) stem in the hepatic gene expression profile of normal mice using DNA microarrays. Biosci Biotechnol Biochem 2008;72:3075-83. https://doi.org/10.1271/bbb.70745
  30. Benalla W, Bellahcen S, Bnouham M. Antidiabetic medicinal plants as a source of alpha glucosidase inhibitors. Curr Diabetes Rev 2010;6:247-54. https://doi.org/10.2174/157339910791658826
  31. Geutskens SB, Otonkoski T, Pulkkinen MA, Drexhage HA, Leenen PJ. Macrophages in the murine pancreas and their involvement in fetal endocrine development in vitro. J Leukoc Biol 2005;78:845-52. https://doi.org/10.1189/jlb.1004624
  32. Jun HS, Yoon CS, Zbytnuik L, van Rooijen N, Yoon JW. The role of macrophages in T cell-mediated autoimmune diabetes in nonobese diabetic mice. J Exp Med 1999;189:347-58. https://doi.org/10.1084/jem.189.2.347
  33. Jansen A, Homo-Delarche F, Hooijkaas H, Leenen PJ, Dardenne M, Drexhage HA. Immunohistochemical characterization of monocytes-macrophages and dendritic cells involved in the initiation of the insulitis and beta-cell destruction in NOD mice. Diabetes 1994;43:667-75. https://doi.org/10.2337/diabetes.43.5.667
  34. Meijer K, de Vries M, Al-Lahham S, Bruinenberg M, Weening D, Dijkstra M, Kloosterhuis N, van der Leij RJ, van der Want H, Kroesen BJ, Vonk R, Rezaee F. Human primary adipocytes exhibit immune cell function: adipocytes prime inflammation independent of macrophages. PLoS One 2011;6:e17154. https://doi.org/10.1371/journal.pone.0017154
  35. Wong FS, Visintin I, Wen L, Flavell RA, Janeway CA Jr CD8 T cell clones from young nonobese diabetic (NOD) islets can transfer rapid onset of diabetes in NOD mice in the absence of CD4 cells. J Exp Med 1996;183:67-76. https://doi.org/10.1084/jem.183.1.67
  36. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, Otsu M, Hara K, Ueki K, Sugiura S, Yoshimura K, Kadowaki T, Nagai R. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 2009;15:914-20. https://doi.org/10.1038/nm.1964
  37. Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006;444:860-7. https://doi.org/10.1038/nature05485
  38. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002;23:549-55. https://doi.org/10.1016/S1471-4906(02)02302-5
  39. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007;117:175-84. https://doi.org/10.1172/JCI29881
  40. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998;101:890-8. https://doi.org/10.1172/JCI1112
  41. Porta C, Rimoldi M, Raes G, Brys L, Ghezzi P, Di Liberto D, Dieli F, Ghisletti S, Natoli G, De Baetselier P, Mantovani A, Sica A. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. Proc Natl Acad Sci U S A 2009;106:14978-83. https://doi.org/10.1073/pnas.0809784106
  42. Mabley JG, Pacher P, Southan GJ, Salzman AL, Szabo C. Nicotine reduces the incidence of type I diabetes in mice. J Pharmacol Exp Ther 2002;300:876-81. https://doi.org/10.1124/jpet.300.3.876
  43. Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol 2005;98:1154-62. https://doi.org/10.1152/japplphysiol.00164.2004
  44. Schenk S, Saberi M, Olefsky JM. Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 2008;118:2992-3002. https://doi.org/10.1172/JCI34260
  45. Fukushima M, Usami M, Ikeda M, Nakai Y, Taniguchi A, Matsuura T, Suzuki H, Kurose T, Yamada Y, Seino Y. Insulin secretion and insulin sensitivity at different stages of glucose tolerance: a cross-sectional study of Japanese type 2 diabetes. Metabolism 2004;53:831-5. https://doi.org/10.1016/j.metabol.2004.02.012
  46. Xu L, Jiang CQ, Lam TH, Cheng KK, Yue XJ, Lin JM, Zhang WS, Thomas GN. Impact of impaired fasting glucose and impaired glucose tolerance on arterial stiffness in an older Chinese population: the Guangzhou Biobank Cohort Study-CVD. Metabolism 2010;59:367-72. https://doi.org/10.1016/j.metabol.2009.08.004
  47. Lin JD, Wan HL, Li JC, Wu CZ, Kuo SW, Hsieh CH, Lian WC, Lee CH, Kao MT, Pei D. Impaired glucose tolerance and impaired fasting glucose share similar underlying pathophysiologies. Tohoku J Exp Med 2007;212:349-57. https://doi.org/10.1620/tjem.212.349
  48. Payne WR, Walsh KJ, Harvey JT, Livy MF, McKenzie KJ, Donaldson A, Atkinson MG, Keogh JB, Moss RS, Dunstan DW, Hubbard WA. Effect of a low-resource-intensive lifestyle modification program incorporating gymnasium-based and home-based resistance training on type 2 diabetes risk in Australian adults. Diabetes Care 2008;31:2244-50. https://doi.org/10.2337/dc08-0152

Cited by

  1. lipopolysaccharide maintains bone density in premenopausal women: a randomized, double-blind, placebo-controlled trial vol.2, pp.6, 2014, https://doi.org/10.1002/fsn3.145
  2. Effect of Peripheral 5-HT on Glucose and Lipid Metabolism in Wether Sheep vol.9, pp.2, 2014, https://doi.org/10.1371/journal.pone.0088058
  3. Phytochemicals of Salacia oblonga responsible for free radical scavenging and antiproliferative activity against breast cancer cell lines (MDA-MB-231) vol.21, pp.4, 2015, https://doi.org/10.1007/s12298-015-0317-z
  4. and Related Species vol.29, pp.7, 2015, https://doi.org/10.1002/ptr.5382
  5. Aspects of extraction and biological evaluation of naturally occurring sugar-mimicking sulfonium-ion and their synthetic analogues as potent α-glucosidase inhibitors from Salacia: a review vol.7, pp.45, 2017, https://doi.org/10.1039/C7RA02955A
  6. LPS to maintain normal bloodstream in adults: Parallel double-blind randomized controlled study pp.20487177, 2018, https://doi.org/10.1002/fsn3.547
  7. Oral administration of Pantoea agglomerans -derived lipopolysaccharide prevents development of atherosclerosis in high-fat diet-fed apoE-deficient mice via ameliorating hyperlipidemia, pro-inflammato vol.13, pp.3, 2011, https://doi.org/10.1371/journal.pone.0195008
  8. Oral administration of Pantoea agglomerans -derived lipopolysaccharide prevents metabolic dysfunction and Alzheimer’s disease-related memory loss in senescence-accelerated prone 8 (SAMP8) mice fed a vol.13, pp.6, 2018, https://doi.org/10.1371/journal.pone.0198493
  9. Low-dose lipopolysaccharide as an immune regulator for homeostasis maintenance in the central nervous system through transformation to neuroprotective microglia vol.16, pp.10, 2021, https://doi.org/10.4103/1673-5374.308067