DOI QR코드

DOI QR Code

Effects of freeze-dried cranberry powder on serum lipids and inflammatory markers in lipopolysaccharide treated rats fed an atherogenic diet

  • Kim, Mi-Joung (Department of Food and Nutrition, College of Natural Sciences, Seoul Women's University) ;
  • Ohn, Jeong (Department of Food and Nutrition, College of Natural Sciences, Seoul Women's University) ;
  • Kim, Jung-Hee (Department of Food and Nutrition, College of Natural Sciences, Seoul Women's University) ;
  • Kwak, Ho-Kyung (Department of Home Economics, Korea National Open University)
  • Received : 2011.03.25
  • Accepted : 2011.09.27
  • Published : 2011.10.31

Abstract

This study investigated the effects of freeze-dried cranberry powder on anti-inflammation and lipid profiles of lipopolysaccharide (LPS)-treated rats fed an atherogenic diet for 6 weeks. Forty Sprague-Dawley male rats (6-weeks-old) were equally divided into the following five groups: 1) normal diet group+saline (NC); 2) atherogenic diet+saline (HFC); 3) atherogenic diet+LPS (HL); 4) atherogenic diet with 5% cranberry power+LPS (C5); 5) atherogenic diet with 10% cranberry power+LPS (C10). LPS (0.5 mg/kg) was injected into the abdominal cavities of rats 18 hours prior to sacrifice. At the end of the experimental period, we measured serum lipid profiles as well as levels of serum C-reactive protein (CRP), nitric oxide (NO), and pro-inflammatory cytokines such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin (IL)-1${\beta}$, IL-6, and IL-10 as an anti-inflammatory cytokine. The mean serum high density lipoprotein (HDL)-cholesterol level in C5 rats was significantly higher than that in NC and HL rats (P<0.05). The mean serum levels of CRP and IL-1${\beta}$ were significantly lower (P<0.05) in the cranberry powder groups compared to those in HL rats. Additionally, mean serum IL-6 levels tended to be lower in the cranberry groups than that in the HL group, whereas serum IL-10 and NO showed 29% and 88% higher mean values in the C5 group and 49% and 24% higher in the C10 group than those in the HL group, respectively. These results suggest that freeze-dried cranberry powder may have beneficial effects on cardiovascular diseases by modifying serum lipids and the early inflammatory response.

Keywords

References

  1. World Health Organization [internet]. The top ten causes of death; Fact sheet No 310 [updated 2011 June]. Available from: http://www.who.int/mediacentre/factsheets/fs310/en/index.html.
  2. Reed J. Cranberry flavonoids, atherosclerosis and cardiovascular health. Crit Rev Food Sci Nutr 2002;42:301-16. https://doi.org/10.1080/10408390209351919
  3. Mahmoudi M, Curzen N, Gallagher PJ. Atherogenesis: the role of inflammation and infection. Histopathology 2007;50:535-46. https://doi.org/10.1111/j.1365-2559.2006.02503.x
  4. Baldassarre D, Porta B, Camera M, Amato M, Arquati M, Brusoni B, Fiorentini C, Montorsi P, Romano S, Veglia F, Tremoli E, Cortellaro M; MIAMI Study Group. Markers of inflammation, thrombosis and endothelial activation correlate with carotid IMT regression in stable coronary disease after atorvastatin treatment. Nutr Metab Cardiovasc Dis 2009;19:481-90. https://doi.org/10.1016/j.numecd.2008.10.003
  5. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC Jr, Taubert K, Tracy RP, Vinicor F. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003;107:499-511. https://doi.org/10.1161/01.CIR.0000052939.59093.45
  6. Huang Y, Nikolic D, Pendland S, Doyle BJ, Locklear TD, Mahady GB. Effects of cranberry extracts and ursolic acid derivatives on P-fimbriated Escherichia coli, COX-2 activity, pro-inflammatory cytokine release and the NF-${\kappa}B$ transcriptional response in vitro. Pharm Biol 2009;47:18-25. https://doi.org/10.1080/13880200802397996
  7. Cimolai N, Cimolai T. The cranberry and the urinary tract. Eur J Clin Microbiol Infect Dis 2007;26:767-76. https://doi.org/10.1007/s10096-007-0379-0
  8. Kim MJ, Jung HN, Kim KN, Kwak HK. Effects of cranberry powder on serum lipid profiles and biomarkers of oxidative stress in rats fed an atherogenic diet. Nutr Res Pract 2008;2:158-64. https://doi.org/10.4162/nrp.2008.2.3.158
  9. Sun J, Hai Liu R. Cranberry phytochemical extracts induce cell cycle arrest and apoptosis in human MCF-7 breast cancer cells. Cancer Lett 2006;241:124-34. https://doi.org/10.1016/j.canlet.2005.10.027
  10. Bodet C, Grenier D, Chandad F, Ofek I, Steinberg D, Weiss EI. Potential oral health benefits of cranberry. Crit Rev Food Sci Nutr 2008;48:672-80. https://doi.org/10.1080/10408390701636211
  11. McKay DL, Blumberg JB. Cranberries (Vaccinium macrocarpon) and cardiovascular disease risk factors. Nutr Rev 2007;65:490-502. https://doi.org/10.1301/nr.2007.nov.490-502
  12. Ruel G, Couillard C. Evidences of the cardioprotective potential of fruits: the case of cranberries. Mol Nutr Food Res 2007;51:692-701. https://doi.org/10.1002/mnfr.200600286
  13. Neto CC. Cranberry and blueberry: evidence for protective effects against cancer and vascular diseases. Mol Nutr Food Res 2007;51:652-64. https://doi.org/10.1002/mnfr.200600279
  14. Vinson JA, Zubik L, Bose P, Samman N, Proch J. Dried fruits: excellent in vitro and in vivo antioxidants. J Am Coll Nutr 2005;24:44-50.
  15. Westerterp M, Berbee JF, Pires NM, van Mierlo GJ, Kleemann R, Romijn JA, Havekes LM, Rensen PC. Apolipoprotein C-I is crucially involved in lipopolysaccharide-induced atherosclerosis development in apolipoprotein E-knockout mice. Circulation 2007;116:2173-81. https://doi.org/10.1161/CIRCULATIONAHA.107.693382
  16. Kim SJ, Park JH, Kim KH, Lee WR, Lee S, Kwon OC, Kim KS, Park KK. Effect of NF-$\kappa$B decoy oligodeoxynucleotide on LPS/high-fat diet-induced atherosclerosis in an animal model. Basic Clin Pharmacol Toxicol 2010;107:925-30. https://doi.org/10.1111/j.1742-7843.2010.00617.x
  17. Report of the American Institute of Nurtition ad hoc Committee on Standards for Nutritional Studies. J Nutr 1977;107:1340-8.
  18. Ainsworth EA, Gillespie KM. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2007;2:875-7. https://doi.org/10.1038/nprot.2007.102
  19. Jia Z, Tang M, Wu J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxides radicals. Food Chem 1999;64:555-9. https://doi.org/10.1016/S0308-8146(98)00102-2
  20. Ryu MH, Cha YS. The effects of a high-fat or high-sucrose diet on serum lipid profiles, hepatic acyl-CoA synthetase, carnitine palmitoyltransferase-I, and the acetyl-CoA carboxylase mRNA levels in rats. J Biochem Mol Biol 2003;36:312-8. https://doi.org/10.5483/BMBRep.2003.36.3.312
  21. Uchiumi D, Kobayashi M, Tachikawa T, Hasegawa K. Subcutaneous and continuous administration of lipopolysaccharide increases serum levels of triglyceride and monocyte chemoattractant protein-1 in rats. J Periodontal Res 2004;39:120-8. https://doi.org/10.1111/j.1600-0765.2004.00716.x
  22. Ruel G, Pomerleau S, Couture P, Lemieux S, Lamarche B, Couillard C. Favourable impact of low-calorie cranberry juice consumption on plasma HDL-cholesterol concentrations in men. Br J Nutr 2006;96:357-64. https://doi.org/10.1079/BJN20061814
  23. Kalgaonkar S, Gross HB, Keen CL. Changes in blood lipid parameters with chronic cranberry consumption in healthy human adults. FASEB J 2007;21:A1093.
  24. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003;107:363-9. https://doi.org/10.1161/01.CIR.0000053730.47739.3C
  25. Paffen E, DeMaat MP. C-reactive protein in atherosclerosis: A causal factor? Cardiovasc Res 2006;71:30-9. https://doi.org/10.1016/j.cardiores.2006.03.004
  26. Libby P, Ridker PM. Inflammation and atherosclerosis: role of C-reactive protein in risk assessment. Am J Med 2004;116:9S-16S. https://doi.org/10.1016/j.amjmed.2004.02.006
  27. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002;347:1557-65. https://doi.org/10.1056/NEJMoa021993
  28. Chun OK, Chung SJ, Claycombe KJ, Song WO. Serum C-reactive protein concentrations are inversely associated with dietary flavonoid intake in U.S. adults. J Nutr 2008;138:753-60.
  29. Frohlich M, Imhof A, Berg G, Hutchinson WL, Pepys MB, Boeing H, Muche R, Brenner H, Koenig W. Association between C-reactive protein and features of the metabolic syndrome: a population-based study. Diabetes Care 2000;23:1835-9. https://doi.org/10.2337/diacare.23.12.1835
  30. Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis 2000;148:209-14. https://doi.org/10.1016/S0021-9150(99)00463-3
  31. So MS, Lee JS, Yi SY. Induction of nutric oxide and cytokines in macrophages by codonopsis lanceolata. Korean J Food Sci Technol 2004;36:986-90.
  32. Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J 1990;265:621-36.
  33. Bodet C, Chandad F, Grenier D. Anti-inflammatory activity of a high-molecular-weight cranberry fraction on macrophages stimulated by lipopolysaccharides from periodontopathogens. J Dent Res 2006;85:235-9. https://doi.org/10.1177/154405910608500306
  34. Park HH, Lee S, Son HY, Park SB, Kim MS, Choi EJ, Singh TS, Ha JH, Lee MG, Kim JE, Hyun MC, Kwon TK, Kim YH, Kim SH. Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells. Arch Pharm Res 2008;31:1303-11. https://doi.org/10.1007/s12272-001-2110-5
  35. Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ Res 2004;95:764-72. https://doi.org/10.1161/01.RES.0000146094.59640.13
  36. Shin JU, Cho HK, Shin MS. Elevated tumor necrosis factor-$\alpha$ in stable angina pectoris. Korean Circ J 2000;30:861-6.
  37. Muller CE, Khoo C, Percival SS. Cranberry polyphenols downregulate the toll-like receptor 4 pathway and NF-${\kappa}B$ activation, while still enhancing tumor necrosis factor $\alpha$ secretion. FASEB J 2010;24:332.2.
  38. Lira FS, Rosa JC, Pimentel GD, Tarini VA, Arida RM, Faloppa F, Alves ES, do Nascimento CO, Oyama LM, Seelaender M, de Mello MT, Santos RV. Inflammation and adipose tissue: effects of progressive load training in rats. Lipids Health Dis 2010;9:109. https://doi.org/10.1186/1476-511X-9-109
  39. von der Thusen JH, Kuiper J, van Berkel TJ, Biessen EA. Interleukins in atherosclerosis: molecular pathways and therapeutic potential. Pharmacol Rev 2003;55:133-66. https://doi.org/10.1124/pr.55.1.5
  40. Nabata T, Fukuo K, Morimoto S, Kitano S, Momose N, Hirotani A, Nakahashi T, Nishibe A, Hata S, Niinobu T, Suhara T, Shimizu M, Ohkuma H, Sakurai S, Nishimaki H, Ogihara T. Interleukin-2 modulates the responsiveness to angiotensin II in cultured vascular smooth muscle cells. Atherosclerosis 1997;133:23-30. https://doi.org/10.1016/S0021-9150(97)00107-X
  41. Mao T, Van De Water J, Keen CL, Schmitz HH, Gershwin ME. Cocoa procyanidins and human cytokine transcription and secretion. J Nutr 2000;130:2093S-2099S.
  42. Halvorsen B, Waehre T, Scholz H, Clausen OP, von der Thusen JH, Muller F, Heimli H, Tonstad S, Hall C, Froland SS, Biessen EA, Damas JK, Aukrust P. Interleukin-10 enhances the oxidized LDL-induced foam cell formation of macrophages by antiapoptotic mechanisms. J Lipid Res 2005;46:211-9.
  43. Svajger U, Obermajer N, Jeras M. Dendritic cells treated with resveratrol during differentiation from monocytes gain substantial tolerogenic properties upon activation. Immunology 2010;129:525-35. https://doi.org/10.1111/j.1365-2567.2009.03205.x
  44. Iyer SS, Ghaffari AA, Cheng G. Lipopolysaccharide-mediated IL-10 transcriptional regulation requires sequential induction of type I IFNs and IL-27 in macrophages. J Immunol 2010;185:6599-607. https://doi.org/10.4049/jimmunol.1002041
  45. Lakoski SG, Liu Y, Brosnihan KB, Herrington DM. Interleukin-10 concentration and coronary heart disease (CHD) event risk in the estrogen replacement and atherosclerosis (ERA) study. Atherosclerosis 2008;197:443-7. https://doi.org/10.1016/j.atherosclerosis.2007.06.033
  46. Deitschel SJ, Kerl ME, Chang CH, DeClue AE. Age-associated changes to pathogen-associated molecular pattern-induced inflammatory mediator production in dogs. J Vet Emerg Crit Care (San Antonio) 2010;20:494-502. https://doi.org/10.1111/j.1476-4431.2010.00565.x
  47. Hsieh NK, Wang JY, Liu JC, Wang SD, Chen HI. Nitric oxide inhibition accelerates hypertension and induces perivascular inflammation in rats. Clin Exp Pharmacol Physiol 2004;31:212-8. https://doi.org/10.1111/j.1440-1681.2004.03977.x
  48. Tokoudagba JM, Auger C, Breant L, N'Gom S, Chabert P, Idris-Khodja N, Gbaguidi F, Gbenou J, Moudachirou M, Lobstein A, Schini-Kerth VB. Procyanidin-rich fractions from Parkia biglobosa (Mimosaceae) leaves cause redox-sensitive endothelium-dependent relaxation involving NO and EDHF in porcine coronary artery. J Ethnopharmacol 2010;132:246-50. https://doi.org/10.1016/j.jep.2010.08.031
  49. Maher MA, Mataczynski H, Stefaniak HM, Wilson T. Cranberry juice induces nitric oxide-dependent vasodilation in vitro and its infusion transiently reduces blood pressure in anesthetized rats. J Med Food 2000;3:141-7. https://doi.org/10.1089/jmf.2000.3.141

Cited by

  1. L.) Protect Jurkat T Cells against Oxidative Stress vol.2013, pp.1942-0994, 2013, https://doi.org/10.1155/2013/456253
  2. mice vol.7, pp.6, 2013, https://doi.org/10.4162/nrp.2013.7.6.430
  3. Berries: Anti-inflammatory Effects in Humans vol.62, pp.18, 2014, https://doi.org/10.1021/jf4044056
  4. spp. population in the gut microbiota of mice vol.64, pp.6, 2014, https://doi.org/10.1136/gutjnl-2014-307142
  5. Novel quercetin-3-O-glucoside eicosapentaenoic acid ester ameliorates inflammation and hyperlipidemia vol.23, pp.4, 2015, https://doi.org/10.1007/s10787-015-0237-0
  6. Antioxidant Properties of Polyphenol Fractions from Cranberry Powder in LPS-Stimulated RAW264.7 Cells vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1241
  7. L.) Flowers Protect Jurkat T-Cells against Oxidative Stress vol.2016, pp.1942-0994, 2016, https://doi.org/10.1155/2016/4216285
  8. Cranberry fruit powder (Flowens™) improves lower urinary tract symptoms in men: a double-blind, randomized, placebo-controlled study vol.34, pp.3, 2016, https://doi.org/10.1007/s00345-015-1611-7
  9. Hesperidin prevents lipopolysaccharide-induced endotoxicity in rats vol.38, pp.5, 2016, https://doi.org/10.1080/08923973.2016.1214142
  10. Effective compounds in the fruit of Muntingia calabura Linn. cultivated in Taiwan evaluated with scavenging free radicals and suppressing LDL oxidation vol.8, pp.4, 2017, https://doi.org/10.1039/C7FO00059F
  11. Co-supplementation of isomalto-oligosaccharides potentiates metabolic health benefits of polyphenol-rich cranberry extract in high fat diet-fed mice via enhanced gut butyrate production pp.1436-6215, 2017, https://doi.org/10.1007/s00394-017-1561-5
  12. Cranberries and Their Bioactive Constituents in Human Health vol.4, pp.6, 2013, https://doi.org/10.3945/an.113.004473
  13. Dietary anthocyanins as a complementary medicinal approach for management of inflammatory bowel disease vol.9, pp.6, 2015, https://doi.org/10.1586/17474124.2015.1002086
  14. Impact of Cranberry Juice Enriched with Omega-3 Fatty Acids Adjunct with Nonsurgical Periodontal Treatment on Metabolic Control and Periodontal Status in Type 2 Patients with Diabetes with Periodontal Disease vol.37, pp.1, 2018, https://doi.org/10.1080/07315724.2017.1357509
  15. Postgenomic Properties of Natural Micronutrients vol.166, pp.1, 2018, https://doi.org/10.1007/s10517-018-4298-0
  16. Effects of Chicory Leaf Extract on Serum Oxidative Stress Markers, Lipid Profile and Periodontal Status in Patients With Chronic Periodontitis vol.37, pp.6, 2018, https://doi.org/10.1080/07315724.2018.1437371
  17. Cranberry antioxidant power on oxidative stress, inflammation and mitochondrial damage vol.21, pp.1, 2018, https://doi.org/10.1080/10942912.2017.1409758
  18. Synergistic effect of cranberry extract and losartan against aluminium chloride-induced hepatorenal damage associated cardiomyopathy in rats pp.1744-4160, 2018, https://doi.org/10.1080/13813455.2018.1465437
  19. Impact of Cranberries on Gut Microbiota and Cardiometabolic Health: Proceedings of the Cranberry Health Research Conference 2015 vol.7, pp.4, 2011, https://doi.org/10.3945/an.116.012583
  20. Effects of cranberry extracts on gene expression in THP ‐1 cells vol.5, pp.1, 2011, https://doi.org/10.1002/fsn3.374
  21. Dietary feeding of freeze-dried whole cranberry inhibits intestinal tumor development in Apc min/+ mice vol.8, pp.58, 2011, https://doi.org/10.18632/oncotarget.22081
  22. Cranberry Polyphenolic Extract Exhibits an Antiobesity Effect on High-Fat Diet-Fed Mice through Increased Thermogenesis vol.150, pp.8, 2020, https://doi.org/10.1093/jn/nxaa163
  23. American cranberries and health benefits – an evolving story of 25 years vol.100, pp.14, 2011, https://doi.org/10.1002/jsfa.8882
  24. The effect of cranberry consumption on lipid metabolism and inflammation in human apo A-I transgenic mice fed a high-fat and high-cholesterol diet vol.126, pp.2, 2011, https://doi.org/10.1017/s0007114520004080
  25. Highly Active Cranberry’s Polyphenolic Fraction: New Advances in Processing and Clinical Applications vol.13, pp.8, 2011, https://doi.org/10.3390/nu13082546
  26. The efficacy of berries against lipopolysaccharide-induced inflammation: A review vol.117, pp.None, 2011, https://doi.org/10.1016/j.tifs.2021.01.015