DOI QR코드

DOI QR Code

Link Adaptation with SNR Offset for Wireless LAN Systems

무선 LAN 시스템에서의 SNR 오프셋을 이용한 링크 적응화

  • 김찬홍 (서울대학교 전기.컴퓨터공학부 무선신호처리연구실) ;
  • 정교원 ;
  • 고경준 (서울대학교 전기.컴퓨터공학부 무선신호처리연구실) ;
  • 이정우 (서울대학교 전기.컴퓨터공학부 무선신호처리연구실)
  • Received : 2011.06.20
  • Accepted : 2011.10.16
  • Published : 2011.10.31

Abstract

Link Adaptation should select the best modulation and coding scheme (MCS) which gives the highest throughput as channel conditions vary. Several link adaptation algorithms for wireless local area network (WLAN) have been proposed but for the future WLAN systems such as 802.11n system, these algorithms do not guarantee the best performance. In this paper, we propose a new link adaptation algorithm in which an MCS level is chosen by the received SNR plus the offset value obtained from the transmission results. The performance of proposed algorithm is simulated by an IEEE 802.11n system. From the analysis, we conclude the proposed algorithm performs better than the well-known link adaptation algorithms such as auto rate fallback and general SNR-based techniques. Particularly, the proposed algorithm improves throughput when the packet error ratio (PER) is constrained for fast fading channels.

링크 적응 기법은 변하는 채널 조건에 맞는 최적의 MCS 레벨을 선택한다. 무선 LAN 시스템을 위한 다양한 링크 적응 알고리즘이 제안되었으나 802.11n과 같은 최근의 시스템에서 최적의 성능을 보장하지는 않는다. 본 논문에서는 수신 SNR과 전송 결과에 따라 얻어지는 오프셋 값을 이용한 새로운 링크 적응 알고리즘을 제안한다. 802.11n 시스템에서 모의실험을 하여 제안된 알고리즘과 잘 알려져 있는 ARF 및 일반적인 SNR기반 알고리즘과 그 성능을 비교해본다. 제안된 알고리즘은 PER에 제한이 있는 경우 시변채널에서 더 좋은 성능을 보인다.

Keywords

References

  1. IEEE 802.11 "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications", Aug. 1999.
  2. IEEE 802.11b "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher-Speed Physical Layer Extension in the 2.4GHz Band", Sep. 1999.
  3. IEEE 802.11a "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher-Speed Physical Layer in the 5GHz Band", Sep. 1999.
  4. IEEE 802.11g "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 4: Further Higher Data Rate Extension in the 2.4GHz Band", June 2003.
  5. IEEE 802.11n/D1.0 Draft Amendment to STANDARD [FOR] Information Technology-Telecommunications and information exchange between systems-Local and Metropolitan networks-Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Enhancements for Higher Throughput, Mar. 2006.
  6. K. Balachandran, S. R. Kadaba, and S. Nanda, "Channel quality estimation and rate adaptation for cellular mobile radio", IEEE Journal on Selected Areas in Communications, Vol.17, No. 7, pp.1244-1256, 1999. https://doi.org/10.1109/49.778183
  7. J. Pavon and S. Choi, "Link adaptation strategy for IEEE 802.11 WLAN via received signal strength measurement", IEEE International Conference on Communications, Vol.2, pp. 1108-1113, May 2003.
  8. M. Heusse, F. Rousseau, G. B. Sabbatel, and A. Duda, "Performance anomaly of 802.11b", INFOCOM, pp.836-843, Apr. 2003.
  9. G. Holland, N. H. Vaidya, and P. Bahl, "A rate-adaptive MAC protocol for multi-hop wireless networks", ACM MOBICOM, July 2001.
  10. I. Haratcherev, J. Taal, K. Langendoen, R. Lagendijk and H. Sips, "Automatic IEEE 802.11 rate control for streaming applications", Wireless Communications and Mobile Computing, Vol.5, pp.421-437, 2005. https://doi.org/10.1002/wcm.301
  11. A. J. Van der Vegt, "Auto rate fallback algorithm for the IEEE 802.11a standard", Utrecht University, Tech. Rep., 2002.
  12. V. Erceg et al,"TGn channel models", IEEE 80 2.11 - 03/940r4, May 2004. http://www.802wirelessworld.com
  13. B. Sklar, Digital communications, 2nd ed., Prentice Hall, 2001, pp.525-529.