Combustive Properties of Low Density Polyethylene and Ethylene Vinyl Acetate Composites Including Magnesium Hydroxide

저밀도 폴리에틸렌과 에틸렌 비닐 아세테이트에 수산화마그네슘을 첨가한 복합체의 연소성

  • 정영진 (강원대학교 소방방재공학과)
  • Received : 2011.07.18
  • Accepted : 2011.10.07
  • Published : 2011.10.31

Abstract

It was performed to test the combustive properties of low density polyethylene and ethylene vinyl acetate (LDPE-EVA) composite by the addition of magnesium hydroxide. Flame retardant of natural magnesium hydroxide was added to the mixture of LDPE-EVA in 40 to 80 wt% concentration. The composite was compounded to prepare specimen for combustive analysis by cone calorimeter (ISO 5660-1). Comparing with virgin LDPE-EVA, the specimens including the magnesium hydroxide had lower flashover possibility. It is supposed that the combustive properties in the composites decreased due to the endothermic decomposition of magnesium hydroxide. The specimens with magnesium hydroxide showed both the lower total heat release rate (THR) and lower CO production rate than those of virgin polymer. As the magnesium hydroxide content increases, the total smoke release (THR) and smoke extinction area (SEA) decreased.

수산화마그네슘을 첨가한 저밀도 폴리에틸렌-에틸렌 비닐 아세테이트 복합체의 연소성을 시험하였다. 저밀도 폴리에틸렌-에틸렌 비닐 아세테이트에 수산화마그네슘을 40~80 wt% 첨가하여 용융 혼합하고 성형 후 콘칼로리미터(ISO 5660-1)를 이용하여 연소성을 시험하였다. 수산화마그네슘을 첨가한 시편은 첨가하지 않은 시험편에 비하여 그의 플래시오버 가능성이 감소하였다. 이것은 순수한 저밀도 폴리에틸렌-에틸렌비닐 아세테이트에 첨가한 수산화마그네슘의 흡열 분해 때문에 연소 억제성이 향상된 것으로 생각된다. 수산화마그네슘을 첨가한 시험편은 첨가하지 않은 시험편에 비해 낮은 총열방출량과 낮은 CO 발생량을 나타내었고, 수산화마그네슘 함량이 증가할수록 총연기발생량과 비소화면적이 감소하였다.

Keywords

References

  1. J.O. Kim, "신기술동향보고서: 고분자첨가제", 특허청 (2001).
  2. M.W. Ranney, "Fire Resitant and Flame Retardant Polymers", Doyes Data Corporation, Park Rige, NJ (1974).
  3. G.L. Nelsion, "Fire and Polymers", American Chemical Society, Washington DC(1990).
  4. M. Lewis, S.M. Altas, and E. M. Pearce, "Flame- Retardant Polymer Materials", Plenum Press, New York(1975).
  5. J.Y. Shieh and C.S. Wang, "Synthesis of Novel Flame Retardant Epoxy Hardners and Properties of Cured Products", Polymer, Vol.42, pp.7617-7625(2001). https://doi.org/10.1016/S0032-3861(01)00257-9
  6. S.Y. Lu and I. Hamerton, "Recent Development in the Chemistry of Halogen-Free Flame Retardant Polymers", Progess in Polymer Science, Vol.27, pp.1661-1712(2002). https://doi.org/10.1016/S0079-6700(02)00018-7
  7. Y. Tanaka, "Epoxy Resin Chemistry and Technology", Marcel Dekker, New York(1988).
  8. J.-P. Hsu and A. Nacu, "Preparation of Submicron- Sized Mg$(OH)_2$ Particles Through Precipitation", Colloids Surf. A: Physicochem. Eng. Aspects, Vol.262, pp.220-231(2005). https://doi.org/10.1016/j.colsurfa.2005.04.038
  9. W.E. Horn, "Inorganic Hydroxides and Hydroxycarbonates: Their Function and Uses as Flame- Retardant Additives", adds. A.F. Grand and C.A. Wilkie, Fire Retardancy of Polymeric Materials. Marcel Dekker, New York(2000).
  10. R.N. Rothon, "Effects of Particulate Fillers on Flame Retardant Properties of Composities", edd. R.N Rothon, Particulate Filled polymer Composites, pp.263-302, Rapra Technology Ltd., Shrewsbury (2003).
  11. M. Lewin and E.D. Weil, "Mechanisms and Modes of Action in Flame Retardancy of Polymer", Adds. A.R. Horrocks and D. Price, Fire Retardant Materials, pp.31-68, Woodhead Publishing, Cambrige, UK (2001).
  12. R.N. Rothon and P.R. Hornsby, "Flame Retardant Effects of Magnesium Hydroxide", Polym. Degrad. Stab., Vol.54, pp.383-385(1996). https://doi.org/10.1016/S0141-3910(96)00067-5
  13. H.M. Lim, J. Yoon, S.O. Jeong, D.J. Lee, and S.-H. Lee, "Preparation of Mg$(OH)_2$-Melamine Core-Shell Particle and Its Flame Retardant Property", Kor. J. Mater. Res., Vol.20, No.12, pp.691-698(2010). https://doi.org/10.3740/MRSK.2010.20.12.691
  14. V. Babrauskas, "New Technology to Reduce Fire Losses and Costs", eds. S.J. Grayson and D.A. Smith, Elsevier Appied Science Publisher, London, UK(1986).
  15. M.M. Hirschler, "Thermal Decomposition and Chemical Composition", American Chemical Society Symposium Series 797(2001).
  16. M.M. Hirschler, "Fire Hazard and Toxic Potency of the Smoke from Burning Materias", Advances in Combustion Toxicology, Vol.2, pp.229-247(1990).
  17. ISO 5660-1, "Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate - Part 1: Heat Release Rate (Cone Calorimeter Method)", Genever(2002).
  18. Y.J. Chung, H.M. Lim, E. Jin, and J.G. Oh, "Combustion-Retardation Properties of Low Density Polyetylene and Ethylene Vinyl Acetate Mixtures with Magnesium Hydroxide", Appl. Eng. Chem., Vol.22, No.4, pp.439-443(2011).
  19. Y.J. Chung, "Comparison of Combustion Properties of Native Wood Species Used for Fire Pots in Korea", J. Ind. Eng. Chem., Vol.16, pp.15-19(2010). doi: 10.1016/j.jiec.2010.01.031.
  20. F.M. Pearce, Y.P. Khanna, and D. Raucher, "Thermal Analysis in Polymer Flammability", Chap. 8, Thermal Characterization of Polymeric Materials, Academic Press, New York, U.S.A.(1981).
  21. J.D. DeHaan, "Kirks's Fire Investigation", Fifth Edition, pp.84-112, Prentice Hall(2002).
  22. V. Babrauskas, "Development of Cone Calorimeter- A Bench-Scale Heat Release Rate Apparatus Based on Oxygen Consumption", Fire and Materials, Vol.8, No.2, pp.81-95(1984). doi: 1002/fam.810080206. https://doi.org/10.1002/fam.810080206
  23. V. Babrauskas and S.J. Grayson, "Heat Release in Fires", E & FN Spon (Chapman and Hall), London, UK (1992).
  24. V. Babrauskas, "Heat Release Rate", Section 3, The SFPE Handbook of Fire Protection Engineering, Fourth ed., National Fire Protection Association, Massatusetts, U.S.A.(2008).
  25. J.G. Quintire, "Principles of Fire Behavior", Chap. 5, Cengage Learning, Delmar, U.S.A.(1998).
  26. R.V. Petrella, "The Assesment of Full-Scale Fire Hazards from Cone Calorimeter Data", J. of Fire Sciences, Vol.12, pp.14-43(1994). https://doi.org/10.1177/073490419401200102
  27. Y.J. Chung, "Comparison of Combustion Properties of Pinus Rigida, Castanea Sativa, and Zelkova Serrata", J. of Korean Instiute of Fire Sci. & Eng., Vol.23, No.4, pp.73-78(2010).