Effect of Plastic Gradient from GND on the Behavior of Polycrystalline Solids

GND 효과에 의한 소성 구배의 다결정 고체 거동에 대한 영향

  • 정상엽 (연세대학교 사회환경시스템공학부) ;
  • 한동석 (연세대학교 사회환경시스템공학부)
  • Received : 2010.10.15
  • Accepted : 2011.03.09
  • Published : 2011.04.30

Abstract

Plastic gradient from geometrically necessary dislocation(GND) can affect material behavior significantly. In this research, mechanical behavior of polycrystalline solid is investigated using the finite element method incorporating plastic gradient from long range dislocation or GND effect. Plastic gradient effect is implemented in the analysis model by considering a long range strain term as well as elastic and plastic terms in the multiplicative decomposition. In the model, gradient hardness coefficient and length parameter are used to evaluate the effect of the long range strains and sensitive study is conducted for the parameters. It is confirmed that the GND amplifies hardening response of polycrystals compared with the single crystal.

재료의 마이크로 스케일 해석에서 결정의 geometrically necessary dislocation(GND) 효과에 의한 소성 구배(plastic gradient)의 고려는 재료의 소성 거동에 큰 영향을 미칠 수 있다. 본 연구에서는 먼 거리(long range) 전위(dislocation)의 영향(또는 GND 효과)을 고려하여 소성 구배의 영향을 받는 다결정 고체(polycrystalline solids)의 거동을 유한요소해석을 이용하여 살펴보았다. 탄성(elastic)과 소성(plastic) 변형에 추가적으로 먼 거리 변형률(long range strain)을 고려한 항(term)이 포함된 변형 구배(deformation gradient)의 multiplicative decomposition 모델을 기반으로 하여 소성 구배 효과를 해석 모델에 포함하였다. 먼 거리 변형률에 의한 영향을 살펴보기 위해 구배 경화 계수(gradient hardness coefficient)와 먼거리 변형률 길이에 대한 재료 변수(parameter)가 사용되었다. 각각의 계수들이 다결정 고체의 거동에 미치는 영향을 확인하기 위해 두 변수의 적용에 따른 다결정 고체의 거동을 분석하였다. 단결정 및 다결정 재료의 GND 효과에 의한 소성 구배를 고려해서, 고려하지 않은 경우와 비교하여 발생하는 경화(hardening)의 차이를 분석함으로서 GND의 다결정 고체 거동의 영향을 확인하였다.

Keywords

References

  1. Acharya, A., Beaudoin, A.J. (2000) Grain-Size Effect in Viscoplastic Polycrystals at Moderate Strains, Journal of the Mechanics and Physics of Solids, 48, pp.2213-2230. https://doi.org/10.1016/S0022-5096(00)00013-2
  2. Acharya, A. (2001) A Model of Crystal Plasticity Based on the Theory of Continuously Distributed Dislocations, Journal of the Mechanics and Physics of Solids, 49, pp.761-784. https://doi.org/10.1016/S0022-5096(00)00060-0
  3. Ashby, M.F. (1970) The Deformation of Plastically Non-Homogeneous Materials, Philosophical Magazine, 21, pp.399-424. https://doi.org/10.1080/14786437008238426
  4. Cullity, B.D., Stock, S.R. (2001) Elements of X-ray Diffraction, Prentice Hall, New Jersey, p.677.
  5. Dumoulin, S., Taboulor, L. (2005) Experimental Data on Aluminium Single Crystals Behaviour, Proceedings of the Institution of Mechanical Engineers - Part C: Mechanical Engineering Science, 219, pp.1159-1167.
  6. Evers, L.P., Parks, D.M., Brekelmans, W.A.M., Geers, M.G.D. (2002) Crystal Plasticity Model with Enhanced Hardening by Geometrically Necessary Dislocation Accumulation, Journal of the Mechanics and Physics of Solids, 50, pp.2403-2424. https://doi.org/10.1016/S0022-5096(02)00032-7
  7. Gerken, J.M., Dawson, P.R. (2007) Bending of a Single Crystal Thin Foil of Material with Slip Gradient Effects, Modeling and Simulation in Materials Science and Engineering, 15, pp.799-822. https://doi.org/10.1088/0965-0393/15/7/007
  8. Gerken, J.M., Dawson, P.R. (2008) A Crystal Plasticty Model that Incorporates Stresses and Strains Due to Slip Gradients, Journal of the Mechanics and Physics of Solids, 56, pp.1651-1672. https://doi.org/10.1016/j.jmps.2007.07.012
  9. Gerken, J.M., Dawson, P.R. (2008) A Finite Element Formulation to Solve a Non-Local Constitutive Model with Stresses and Strains Due to Slip Gradients, Computer Methods in Applied Mechanics and Engineering, 197, pp.1343-1361. https://doi.org/10.1016/j.cma.2007.11.003
  10. Gudmundson, P. (2004) A Unified Treatment of Strain Gradient Plasticity, Journal of the Mechanics and Physics of Solids, 52, pp.1379-1406. https://doi.org/10.1016/j.jmps.2003.11.002
  11. Gurtin, M.E. (2002) Onthe Plasticity of Single Crystals: Free Energy, Microforces, Plastic-Strain Gradients, Journal of the Mechanics and Physics of Solids, 48, pp.989-1036.
  12. Hall, E.O. (1951) The Deformation and Ageing of Mild Steel: III Discussion of Results, Proceedings of the Physical Society, 64, pp.747-753.
  13. Han, C.S., Roters, F., Raabe, D. (2006) On Strain Gradients and Size-Dependent Hardening Descriptions in Crystal Plasticity Frameworks, Metals and Materials International, 12, pp.407-411. https://doi.org/10.1007/BF03027707
  14. Hartley, C.S. (2003) A Method for Linking Thermally Activated Dislocation Mechanisms of Yielding with Continuum Plasticity Theory, Philosophical Magazine, 83, pp.3783-3808. https://doi.org/10.1080/14786430310001599522
  15. Petch, N.J. (1953) Cleavage Strength of Polycrystals, International Iron and Steel Institute, 174, pp.25-28.