Fuzzy Control of Smart TMD using Multi-Objective Genetic Algorithm

다목적 유전자알고리즘을 이용한 스마트 TMD의 퍼지제어

  • Received : 2010.07.31
  • Accepted : 2010.10.18
  • Published : 2011.02.28

Abstract

In this study, an optimization method using multi-objective genetic algorithm(MOGA) has been proposed to develop a fuzzy control algorithm that can effectively control a smart tuned mass damper(TMD). A 76-story benchmark building subjected to wind load was selected as an example structure. The smart TMD consists of 100kN MR damper and the natural period of the smart TMD was tuned to the first mode natural period of the example structure. Damping force of MR damper is controlled to reduce the wind-induced responses of the example structure by a fuzzy logic controller. Two input variables of the fuzzy logic controller are the acceleration of 75th floor and the displacement of the smart TMD and the output variable is the command voltage sent to MR damper. Multi-objective genetic algorithm(NSGA-II) was used for optimization of the fuzzy logic controller and the acceleration of 75th story and the displacement of the smart TMD were used as objective function. After optimization, a series of fuzzy logic controllers which could appropriately reduce both wind responses of the building and smart TMD were obtained. Based on numerical results, it has been shown that the control performance of the smart TMD is much better than that of the passive TMD and it is even better than that of the sample active TMD in some cases.

본 연구에서는 스마트 TMD를 효과적으로 제어할 수 있는 퍼지제어알고리즘을 개발하기 위하여 다목적 유전자알고리즘을 이용한 최적화기법을 제안하였다. 예제구조물로는 풍하중을 받는 76층 벤치마크건물을 선택하였다. 스마트 TMD를 구성하기 위하여 100kN 용량의 MR 감쇠기를 사용하였고, 스마트 TMD의 진동주기는 예제구조물의 1차모드 고유진동주기에 맞추어 조율되었다. MR 감쇠기의 감쇠력은 예제구조물의 풍응답을 최소화할 수 있도록 퍼지제어기를 통해서 조절된다. 퍼지제어기의 입력변수는 75층의 가속도 응답과 스마트 TMD의 변위응답으로 하였고, 출력변수는 MR 감쇠기로 전달되는 명령전압으로 하였다. 퍼지제어기의 최적화를 위하여 다목적 유전자알고리즘인 NSGA-II 기법이 사용되었고, 이때 75층의 가속도 응답과 스마트 TMD의 변위응답을 목적함수로 사용하였다. 최적화 결과, 구조물의 풍응답과 STMD의 변위응답을 동시에 적절히 제어할 수 있는 다수의 퍼지제어기를 얻을 수 있었다. 수치해석을 통해서 스마트 TMD의 성능이 수동 TMD에 비하여 월등히 뛰어남을 알 수 있었고 경우에 따라서는 샘플 능동 TMD보다 더 우수한 제어성능을 발휘하였다.

Keywords

References

  1. Deb, K., Pratap, A., Agrawal, S., Meyarivan, T. (2000) A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II, Technical Report No.200001, Kanpur: Indian Institute of Technology Kanpur, India.
  2. Dyke, S.J. (2005) Current Directions in Structural Control in the US, 9th World Seminar on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, Kobe, Japan, pp.1-22.
  3. Jansen, L.M., Dyke, S.J. (2000) Semi-Active Control Strategies for MR Dampers: A Comparative Study, ASCE Journal of Engineering Mechanics, 126, pp.795-803. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:8(795)
  4. Kareem, A., Kijewski, T. (1999) Mitigation of Motions of Tall Buildings with Specific Examples of Recent Applications, Wind and Structures, 2(3), pp.201-251. https://doi.org/10.12989/was.1999.2.3.201
  5. Koo, J.H. (2003) Using Magneto-Rheological Dampers in Semiactive Tuned Vibration Absorbers to Control Structural Vibrations, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, USA.
  6. Koo, J.H., Ahmadian, M., Setareh, M. (2006) Experimental Robustness Analysis of Magneto- Rheological Tuned Vibration Absorbers Subject to Mass Off-Tuning, Journal of Vibration and Acoustics, Transactions of the American Society of Mechanical Engineers, 128(1), pp.126-131.
  7. Koo, J.H., Setareh, M., Murray, T.M. (2004) In Search of Suitable Control Methods for Semi-Active Tuned Vibration Absorbers, Journal of Vibration and Control, 10, pp.163-174. https://doi.org/10.1177/1077546304032020
  8. Nagarajaiah, S. (2009) Adaptive Passive, Semiactive, Smart Tuned Mass Dampers: Identification and Control using Empirical Mode Decomposition, Hilbert Transform and Short-Term Fourier Transform, Structural Control and Health Monitoring, 16, pp.800-841. https://doi.org/10.1002/stc.349
  9. Narasimhan, S., Nagarajaiah, S., Johnson, E.A., Gavin, H.P. (2006) Smart Base-Isolated Benchmark Building. Part I: Problem Definition, Structural Control and Health Monitoring, 13, pp.573-588. https://doi.org/10.1002/stc.99
  10. Nishitani, A., Inoue, Y. (2001) Overview of the Application of Active/Semiactive Control to Building Structures in Japan, Earthquake Engrg. and Struct. Dyn., 30, pp.1565-1574. https://doi.org/10.1002/eqe.81
  11. Samali, B., Kwok, K.C.S., Wood, G.S., Yang, J.N. (2004) Wind Tunnel Tests for Wind-Excited Benchmark Building, Journal of Engineering Mechanics, ASCE, 130(4), pp.447-450. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(447)
  12. Spencer, B.F.Jr, Johnson, E.A., Ramallo, J.C. (2000) Smart Isolation for Seismic Control, JSME Int J Ser C, 43(3), pp.704-711. https://doi.org/10.1299/jsmec.43.704
  13. Yang, J.N., Agrawal, A.K., Samali, B., Wu, J.C. (2004) Benchmark Problem for Response Control of Wind-Excited Tall Buildings, Journal of Engineering Mechanics, ASCE, 130(4), pp.437-446. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(437)