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Fully Collusion-Resistant Trace-and-Revoke Scheme in
Prime-Order Groups

Jong Hwan Park, Hyun Sook Rhee, and Dong Hoon Lee

Abstract: A trace-and-revoke scheme is a type of broadcast en-
cryption scheme for content protection on various platforms such
as pay-per-view TV and DVD players. In 2006, Boneh and Wa-
ters (BW) presented a fully collusion-resistant trace-and-revoke
scheme. However, a decisive drawback of their scheme is to re-
quire composite-order groups. In this paper, we present a new
trace-and-revoke scheme that works in prime-order groups. Our
scheme is fully collusion-resistant and achieves ciphertexts and pri-
vate keys of size O(v/N) for N users. For the same level of secu-
rity, our scheme is better than the BW scheme in all aspects of effi-
ciency. Some superior features include 8.5 times faster encryption,
12 times faster decryption, and 3.4 times shorter ciphertexts. To
achieve our goal, we introduce a novel technique where, by using
asymmetric bilinear maps in prime-order groups, the cancellation
effect same as in composite-order groups can be obtained.

Index Terms: Bilinear maps, broadcast encryption, content distri-
bution system, trace-and-revoke scheme,

L. INTRODUCTION

A trace-and-revoke scheme [1] is a type of broadcast encryp-
tion scheme for content protection on various platforms such as
pay-per-view TV and DVD players. One typical method to pro-
tect content is to encrypt messages that are broadcast by a con-
tent distributor and to let only authorized users decrypt resultant
ciphertexts. If a user subscribes to a pay-per-view TV system,
the user will be given a distinct set of decryption keys that could
be stored into a device, e.g., a set-top box. The set of decryp-
tion keys, which enables to watch programs that the TV system
offers, contains a user-specific identifier such as a user index
i € {1,---,N} where N is the total number of users. Using
those indices, a content distributor (adopting a trace-and-revoke
scheme) not only specifies some subset of users S C {1,---, N}
who are authorized to recover encrypted content, but also traces
the source identifiers {i} of decryption keys that build a pirate
decoder against the pay-per-view TV system.

Basically, a trace-and-revoke scheme provides two function-
alities of revocation [2] and traitor-tracing [3]. When the scheme
is first set up, a content distributor encrypts contents to a subset
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ofusers S C {1, - - -, N} and broadcasts ciphertexts using the re-
vocation functionality. Later, when a pirate decoder is found, the
tracing scheme interacts with the pirate decoder and identifies a
set of users 7 C {1,---, N} whose decryption keys contribute
to building the pirate decoder. Once a user u € T is revealed as
being responsible for the pirate decoder, u is revoked from fu-
ture broadcasts and the content distributor can take legal action
against the user u.

A trace-and-revoke scheme is said to be fully collusion-
resistant if the scheme is still secure against any number of col-
luders who wish to break revocation or traitor-tracing mecha-
nism. Several trace-and-revoke schemes [4}-[6] were suggested
in a fully collusion-resistant manner, and other schemes [1],
[71-[9] were designed for the case where the number of collu-
sions is only fewer than t. The latter schemes become insecure
as soon as more than ¢ revoked users work together for breaking
the revocation or a pirate decoder uses more than ¢ user keys
for attacking the traitor-tracing. Naturally, the content distrib-
utor wants to obtain a trace-and-revoke scheme that is able to
resist arbitrary collusion.

In constructing trace-and-revoke schemes, one of main chal-
lenges is to reduce ciphertext size. This is because, similar to
broadcast encryption schemes [2], a normal trace-and-revoke
scheme should be suitable for applications with a large number
of users. For instance, a pay-per-view TV system with N = 108
users has to send an encrypted content to almost all users in the
end even thought each user wants to see the content at a differ-
ent time. In this case, the total transmission cost regarding 10°
users is an important factor to the system networks. Other chal-
lenge is to obtain a tracing time as short as possible. For a given
pirate decoder, the traitor-tracing algorithm tries to identify a set
of traitors T C {1,---, N}, under the consideration that each
user could be a potential traitor in T'. This means that the trac-
ing process is performed per each user s fori = 1 to N. In
this case, for a large IV, the total tracing time should be within
a reasonable bound such as a few days or one weak. Otherwise,
a trace-and-revoke scheme must end up being applied to broad-
cast systems with smaller V.

Until now, there has been only one trace-and-revoke scheme
[10] that is fully collusion-resistant and simultaneously achieves
ciphertexts and private keys of size O(v/N). The scheme [10]
by Boneh and Waters (BW) introduced a new elegant tech-
nique to obtain a different class of trace-and-revoke scheme,
but a drawback is that the BW scheme relies on composite-
order groups equipped with bilinear maps (i.e., pairings). In
general, a composite order should be at least 1024 bits long
at current Rivest-Shamir-Adleman (RSA) security levels. This
large size of the group makes the BW scheme impractical. For
instance, we cannot take advantage of representing a group el-
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ement as about 170 bits, which is the main merit in pairing-
based groups, and thus the ciphertext size in composite-order
groups becomes longer than one in prime-order groups. Also,
one exponentiation in composite-order groups is about 25 times
slower than one in prime-order groups, and one pairing op-
eration in composite-order groups is about 30 times costlier
than one in prime-order groups [11]. These two operations also
make encryption/decryption/tracing algorithms in composite-
order groups slower than those in prime-order groups.

A natural direction of research is to construct a trace-and-
revoke scheme that works in prime-order groups, while preserv-
ing the elegant efficiency of the BW scheme. Clearly, there has
been no known result of such a scheme. In this paper, we present
a fully collusion-resistant trace-and-revoke scheme that achieves
ciphertexts and private keys of size O(v/N). Our new scheme
is based on prime-order groups, and more efficient than the BW
scheme in terms of all efficiency aspects for the same level of se-
curity. More precisely, the ciphertext is approximately 3.4 times
shorter, encryption is roughly 8.5 times faster, and decryption is
about 12 times faster. These results also allows for a faster trac-
ing time than the BW scheme. To achieve the efficiency results,
we introduce a novel technique for achieving the same cancel-
lation effect as in composite-order groups by using asymmetric
bilinear maps in prime-order groups. Our technique is to gener-
ate positive and negative pairing values and cancel them out in
a natural way, which is new and simple in settings where user
indices are arranged in a v N x v/N matrix.

Related weork: Broadcast encryption scheme [2] allows a
content distributor to send encrypted messages to a set of
legitimate users, and disallows revoked users to recover the
messages even if they collude. Several broadcast encryption
schemes [4]-{6], [12], [13] were secure against arbitrary num-
ber of collusion, and particularly only two schemes [12], [13],
which are all pajring-based, have ciphertext size sub-linear in
the number of revoked users.

On the other hand, a tractor tracing scheme [3] is a type of
detection scheme that aims at identifying at least one of traitors
whose secret key is used to create a pirate decoder. Two traitor
tracing schemes [11], [14] have been proposed to resist arbitrary
collusion and also to achieve ciphertexts of size O(v/N). The
scheme [14] was constructed in composite-order groups, but the
scheme [11] in prime-order groups.

A trace-and-revoke scheme provides two functions of the
broadcast encryption as well as the traitor tracing. Several trace-
and-revoke schemes [1], {7]-{9] were designed for resisting any
r (< t) collusions, and other trace-and-revoke schemes [4]-[6]
were fully collusion-resistant. Recently, BW {10] suggested
a trace-and-revoke scheme by using an algebraic property of
composite-order groups. The BW scheme is the first one that
is fully collusion-resistant and also achieves ciphertexts and pri-
vate keys of size O(v/N). However, as mentioned above, their
scheme was constructed using composite-order groups.

II. PRELIMINARIES

A. Augmented Broadcast Encryption

The goal of this paper is to construct a fully collusion-
resistant trace-and-revoke scheme. However, as in the approach
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of BW [10], we first build a simple primitive called augmented

broadcast encryption (ABE) scheme, and then extend it to im-

plement a trace-and-revoke scheme.

An ABE scheme consists of three algorithms: Setup, g,

Encrypt spp, and Decrypt spp.

e (PK K1, Ka, -, Kn) « Setup,pg(h, N): The setup al-
gorithm takes as input a security parameter A and the number
N of users in the scheme. The setup algorithm outputs a pub-
lic key PK for the scheme and private keys (K, -+, Kn)
where K, is given to the user u.

o CT < Encrypt,pg(S, PK, i, M): The encryption algo-
rithm takes as input a subset of users § € {1,---, N}, the
public key PK, an integer ¢ satisfying 1 < i < N + 1,
a message M. The encryption algorithm outputs a cipher-
text CT. This algorithm encrypts the message to a set S N
{i,-- N}

o M < Decrypt, p(CT, K}, 5): The decryption algorithm
takes as input a ciphertext CT, a private key K, for user
4, and a subset of users S C {1,---, N}. This algorithm
outputs a message M or L.

Correctness: The ABE scheme must satisfy the following
correctness property: For all subsets S C {1,---, N}, all 4,5 €

{1,--+, N + 1} (where j < N), and all messages M:

Let (PK, K1, Kg, -+, Kn) + Setup,pp(A, N} and
CT « Encryptpg(S, PK, 4, M).
IfjeSandyj>i,
then M « Decrypt 5z (CT, K, S).

B. Security for ABE

Following [10], we define chosen-plaintext security for ABE
by describing two games that consist of message hiding and in-
dex hiding.

Index hiding: This property requires that an adversary can-
not distinguish between an encryption to index ¢ and one to in-
dex 7 + 1 without the key K;. Additionally, it says that an ad-
versary cannot distinguish between an encryption to index 4 and
one to index ¢ + 1 when i is not in the target set S even with the
key K;. The game takes as input an index ¢ C {1, -- -, N} which
is given to both the challenger and the adversary. The game be-
tween the adversary and the challenger proceeds as follows,

e Setup: The challenger runs the setup algorithm and gives the
adversary PK and the set of private keys { K s.t. j # i}.

o Query: The adversary outputs abit s € {0,1}. If § =1, the
challenger sends K, to the adversary. Otherwise the chal-
lenger does nothing.

e Challenge: The adversary gives the challenger a set § C
{1,---, N} and a message M. The only restriction is that if
§ = lthen: ¢ S. The challenger picks a random bit 3 &
{0,1} and sends a ciphertext CT + Encrypt ,pg(5, PK,
1 + 3, M) to the adversary.

o Guess: The adversary returns a guess 3’ € {0,1} of 3.

The advantage of the adversary A is Adv 4 rg[i]| = [Pr[f’ =

Bl =3l

| MeQSsage hiding: This property requires that an adversary can
not break semantic security when encryption is performed on
inputi = N + 1. The game between the adversary and the chal-
lenger proceeds as follows.
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e Setup: The challenger runs the setup algorithm and sends
the generated public key PK and the secret keys K1, Ko,
.-+, Ky to the adversary.

o Challenge: The adversary outputsaset S C {1,---, N} and
two equal length messages My, AM;. The challenger picks
a random bit 8 € {0,1} and sends a ciphertext CT <«
Encrypt g (S, PK, N + 1, Mg) to the adversary.

¢ Guess: The adversary returns a guess 3’ € {0, 1} of .

The advantage of the adversary A is Adv 4 yg = |Pr[f =

Bl - 3l

Definition 1: We say that an /N-user ABE scheme is secure if
for all polynomial time adversaries .4 we have that Adv 4 1y [{]
foralli € {1,---, N} and Adv 4 arg are negligible in the se-

curity parameter A.

C. A Trace-and-Revoke Scheme Using ABE

Given a secure ABE scheme defined above, BW [10] showed
that one can obtain a secure trace-and-revoke scheme TR =
(Setup 5, Encrypt, Decrypt, 5., Trace”), where two new
encryption and tracing algorithms are defined as follows.

o Encrypt(S,PK, M) := Encrypt,pg(S,PK, 1, M). This
means that the message M can be decrypted by users in
Sn{l,--- n}, thatis, users in S.

e Given a pirate decoder D that will decrypt all ciphertexts en-
crypted for a certain set Sp, the goal of the Trace” is to
detect from D at least one of users u € Sp whose keys were
used to construct D. More precisely, Trace”(Sp, PK, €)
takes as input a certain set Sp, public key PK, and a given
¢ > 0 (where ¢ = 1/f(X) for some polynomial f). Here,
¢ is the at least probability with which D decrypts cipher-
texts validly. Then, the tracing algorithm Trace® (Sp, PK, )
works as follows.

Initialize set T to the empty set.

. Fori =1to N, do the following:

(a) For 8\(N/e)? times, the algorithm repeats the follow-

ing steps:

i. Sample M from the finite message space at random.

ii. LetC & Encrypt 5 (Sp, PK, 4, M).

iii. Call oracle D on input C', and compare the output of
Dio M.

(b) Let p; be the fraction of times that D decrypted the ci-

phertexts correctly.

(¢) Ifp; — Pir1 > €/(4N), then add 7 to set T..

3. Output the set 7'.

Regarding the security of the trace-and-revoke scheme, we
consider two games: Message hiding game and tracing game.
The former is similar to that of ABE, and the latter is to ensure
that the tracing algorithm successfully traces any pirate decoder
D. We refer to {10] for the formal treatment of these security
games. BW [10] showed that a secure ABE scheme implies a
trace-and-revoke scheme that i3 secure against adaptive adver-
saries under both the security games.

In the tracing game, an adversary outputs (D, Sp) where
D will decrypt all ciphertexts encrypted for the set Sp. Then,
the Trace” interacts with D as described in the above routine,
and tries to detect one of the keys u € Sp that was used to
build D. Once such u is extracted, the tracing algorithm sets

N

5" = Sp \ {u} and encrypts messages to S’. If D can still de-
crypt ciphertexts, the tracing algorithm will be again performed
against (D, '), thereby to extract another of the pirate’s keys
in Sp. In this way, we can run the tracing algorithm repeatedly
until D does not work, by further shrinking 5’

D. Asymmetric Bilinear Maps and Complexity Assumptions

We briefly review asymmetric bilinear maps and define com-
plexity assumptions necessary for our security proofs.

Asymmetric bilinear maps: We follow the standard notation
in [15] and {16]. Let G1, G2, and G be three (multiplicative)
cyclic groups of prime order p. Let ¢ € G1 and h € Ga. Let
e : G1 x Gy — Gr be afunction that has the following proper-
ties.

1. Bilinear: Forall g € Gy, allh € Gy, and @, b € Z,, we have
e(g®, h?) = e(g,h)*.

2. Non-degenerate: If g generates G1 and & generates Go, then
e(g, h) generates Gr.

3. Computable: There is an efficient algorithm to compute the
map e.

Throughout the paper, we assume that no efficiently computable

isomorphism exists between G5 and Gy. In fact, there exists

isomorphisms between two groups since they are cyclic groups

of the same order. However, according to [17] and [18], we can

obtain such groups where computing these isomorphisms is pre-

sumably as hard as computing discrete logarithms. Based on

the nonexistence of such efficient isomorphisms, the following

complexity assumptions hold:

Asymmetric decision 3-party Diffie-Hellman problem:
The asymmetric decision 3-party Diffie-Hellman problem [19]
is defined as follows. Given (g, ¢%, g°, h, h, he®, h¢, T) €
G3 x G as input, determine whether T = h%% or T is random
in GQ.

External Diffie-Hellman (XDH) problem: The XDH prob-
lem [17], [18], [20]-[23] states that the decision Diffie-Hellman
(DDH) problem is hard in (G;. More precisely, the XDH prob-
lem is defined as follows: Given (g, g%, ¢%, h, T) € G% x G x
G, as input, determine whether T = ¢g® € G or T is random
nG 1.

Definition 2: We say that the {asymmetric decision 3-party
Diffie-Hellman, XDH} assumption holds in G; x G if the
advantage of any polynomial time algorithm in solving the
{asymmetric decision 3-party Diffie-Hellman, XDH} problem
is negligibie.

III. OUR ABE CONSTRUCTION

We assume that the number IV of users in the ABE scheme is
equal to m? for some positive integer m. As stated in [14], if
N is not a square, then we can add some dummy users in order
to construct the perfect square. Forauseri € {1,---, N}, letz
and y be two positive integers such that § = (x—1)m-+y, where
1<z <mand1l <y < m. Then, the user { is identified as
an entry (z, %) of an m X m matrix. Also, the private key for the
user %, i.e., {z,y), is uniquely generated by using secret values
involved with both row z and column y.

Based on the m X m matrix, a ciphertext consists of row
ciphertexts (R 1, Rz2, Rz 3, Rya4, Bz) for each row = €
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Jjth column

Fx<i (gzx’x’gzx,z’.“)

ith row —>

Cx=i(EM M)

rx > (B B )

¥ f

y<j yj
(H‘:"hﬂzly , H;Z kwelly ) (Hf' , [[;‘; )

Fig. 1. Row and column ciphertext components when encrypting to
position (4, 7).

{1,---,m} and column ciphertexts (C,,1, Cy2) for each col-
umn y € {1,---,m}. Thus, the total ciphertext contains 7m
group elements. In decryption, each user needs only row and
column ciphertexts corresponding to its own entry (z,y).

A. Our Approach

The basic idea behind our ABE construction is the same as
that of BW [10], where two private keys of broadcast encryption
scheme [12}! and traitor-tracing scheme {14] are multiplied in
order to prevent colluding users from decomposing other valid
keys. In our construction, the technique of broadcast encryption
scheme is the same as that of [10], but the technique of traitor-
tracing scheme is new and different from that of [10]. The main
difference between two tracing schemes is that the BW-ABE
scheme must be based on composite-order groups, but our trac-
ing scheme is based on prime-order groups. Nevertheless, the
effect obtained is same.

We explain such difference more concretely. When encrypt-
ing messages to a certajn set S and an index (4, j), the encryp-
tion algorithm of ABE outputs a ciphertext that can be decrypted
by any user in S as well as parts A, B, and C in Fig. 1. Since col-
umn ciphertexts for part C' and part D are correlated with com-
mon row ciphertexts for x = 4, we can see that the column ci-
phertexts for part C' should be constructed differently from those
for part D. That is, there must be different factors in the column
ciphertexts between part C and D. In our construction, such fac-
tors are (h%2*v h=%2) fory < jin Fig. 1, where all exponents
are randomly selected. These two elements will work to prevent
users in part D from successfully decrypting ciphertexts. How-
ever, such factors should not make any difference for users in
both parts 4 and B, even when correlated with common row
ciphertexts (E%%«, E92¢: ...) for z > i (where all exponents
are randomly chosen). In fact, solving this paradoxical problem
is the key for providing the tracing property in the m x m matrix
setting. Fortunately, we can see that (h%2*v h=%1%) for y < j
are canceled out when corresponding ciphertexts components
are paired in bilinear maps. Such cancellation can be checked

Strictly speaking, the original broadcast encryption scheme [12] is slightly
modified, rather than straightforwardly applied. Similar portion of broadcast en-
cryption scheme in [10] was later suggested by the works [24], [25].

via the following equation.

6(E21¢2’ H?jlhﬁzky)e(Ezzfﬁx’ H;zh—elx\y)
:e(Egmm’ ]];1)6(322%’ H;z)

where the left-hand side indicates computation for part A and
the right-hand side indicates computation for part B. The im-
portant point is that the additional factors h%*v and h=92*s,
which need to hinder decryption of part D, are canceled out by
generating positive and negative parings values. Such a cancel-
lation effect can be similarly obtained in [10] and [14] by using
composite-order groups. Let G = G x G, be a composite-
order group for two primes p and ¢, and let g, € G}, and
gq € G,. Briefly speaking, the column ciphertexts are gener-
ated as (gpgq)syg;)\y fory < j and (gpg,)® fory > j where all
exponents are randomly chosen. Note that gﬁ ¥ makes difference
like (h¥2*v, h=%1%v) in our construction. If row ciphertexts for
x > 1 are generated by gg’f, then the additional factor gg Y is
cancelled out by virtue of the property such that e(gp, g4) = 1.
Finally, in any case, row ciphertexts for z < ¢ are generated
in dummy forms by using randomly selected exponents such as
2,1 and z, o in Fig. 1.

B. Scheme

e Setup,pgp(\, N = m?): Given asecurity parameter A € Z+
and the number N of total users in the system, the setup algo-
rithm runs a generation algorithm G(A) (for bilinear groups
and pairings) to obtain a tuple (p, G, G, G, €). The al-
gorithm picks random group elements g € G, h € G, and
random exponents {r;, ¢;, a;, 3}, in Z,. The algorithm
sets

Ey=g",  En=gm,
Hy=h%,-- H, = h",
Up =g, Upn=g",
Vi =RV = AP
Ar=e(g, )™, Ay = e(g, h)*.

The public key PK with the description of (p, Gy, G, G,
e) is given by

PK = (g, hy {Bss Hy, Us, Viy AHE )
c G‘i}m-i Ly Giz)m-%‘l % G?f.

To generate the private key K, . for user (z,y}, the algo-
rithm picks a random exponent o, € Z, and generates the
key as follows.

dlf

K(x,y) = (ng i di, -y dy 1, dy+1;"';dm)

z,Y)

. O,
= (haxhrﬂccy‘/f%y, hdfa.@/’ Vl Y ‘{/3/_’”197

70x,y Ty, m+1
Vs Vo) e apt

e Encrypt,pi(S, PK, (i,7), M): To encrypt a message M €
G to the recipients who are in S and simultaneously who
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Jjth column

839, LA (835, +845,)8,
(EX B gt

(H U, )(53% +645,38, , MAi”‘:S, 645,29, )
ied,

L1 629, (835, +825,)4,
(B E? g™ ,

(B8, +8y5, 34, (65,45, 36,
(HU»‘) s, +O28, ,MA‘X (WAL S )

=3

T H

s, 3~ 5, 5
JH h "7 )(H P H )

04,

(H'h

Fig. 2. Row and column ciphertexts on the encryption to position (%, 7).

have row z such that z > 4 or both row £ = 1 and col-
umn ¥ such that y > j. The encryption algorithm picks ran-

1
dom exponents s1, s2, 61, 02, 03, 84, {¢} 7., {/\y}’yzl,

and {2q,1, %¢,2, %2,3, Zz,4 } oy I0 Z,, under a constraint that
0203 _ 9194 74- 0 in Zp.
Let S, denote the set of all values y such that the user (z,y)
is in the set S. For each row x the algorithm constructs row
ciphertexts (R 1, Ry 2, Rz 3, Ry 4, By) as follows.
Ifz <i:
Rx,l — gZz,l’ Rz,2 — gZa:,2’ Rz,3 — gz:c,s7
Rea= ([l U™, B.=nzs
€S,
Ifo=i
Ry1 = Ezs% = 97@93%,
R,5= g(6351+94s2)¢x
0351 +0452)¢z
Rea=( H Ui)( ,
€8,
B, = MA;9351+0452)¢1 — Me(g,h)az(6351+9432)¢m'
Ifz>i:

Rm,l p— Egl¢z p— gra:91¢‘w’
R.3= 9(91$1+92~92)<f>w,
0181+0282) ¢y

Rm,4 = ( H Uz)( 3
€S,
B, = MA(x9181+9252)¢x — Me(g, h)az(9131+0252)¢$.

Rea= Eg4¢:u — g'r'm04¢x,

Ry = Egz% = grw(}g:j)m’

For each column y, the algorithm creates column ciphertexts
(Cy,1,Cy,2) as follows.

Ify<j: Cyar=H h"M = hovorpf2dy
Cy = HPh™ 0% = pevsap=0ih,
fy>jg: C:lhl = H;l = hoo1,

Cy2 = H? = hv®,
The algorithm outputs the ciphertext
CT= ({R:L',l: R:I:,Zy R$,37 Rw,4};n:1) {C ,1s Oy,Q};n:17
{B.}I,) € GIm x G&™ x G,

e Decrypt,pr(CT, K5 ), S): Assume that user ¢ (= (z -
1Ym + y) belongs to S and thus S;. To decrypt a ciphertext
CT using the private key K, ), the decryption algorithm
first computes a temporary key

Kgnzy) = d;,y H .

kESy
k#y

Next, the algorithm outputs

G(Rx,L Cy,l)e(Rx,% Cy,Q)e(Ra?,‘l’ dg,y)

B,
e(Rm’g’ KEx:y)>

C. Correctness

We show that the ciphertext generated by Encrypt,pp (S,
PK, (i, j), M) algorithm are correctly decrypted by the targeted
users. More precisely, the resultant ciphertext must be correctly
decrypted by any user in the set S and in the three parts A, B,
and C'in Fig. 2. We consider each decryption process that is per-
formed in four different parts A, B, C, and D. Note that users
in D are not belonging to the set of the targeted users, and thus
they must not recover the message M correctly.

IV. SECURITY

In this section, we prove that our proposed ABE scheme is se-
cure under the asymmetric decision 3-party Diffie-Hellman as-
sumption and the XDH assumption.

A. Index Hiding

Theorem 1: Under the asymmetric decision 3-party Diffie-
Hellman assumption and the XDH assumption, there is no prob-
abilistic polynomial time adversary that can distinguish between
an encryption to two adjacent recipients in the index hiding
game for any (i,7) where 1 < 4,5 < m with non-negligible
probability.

A full proof of Theorem 1 follows in Lemma 1 and Lemma 2.
As in [11] and [14], these two lemmas are given by two possible
cases that include an index hiding game where the adversary
tries to distinguish between ciphertexts encrypted to (4, 7) and
(3,7 + 1) when 1 < j < m, and an index hiding game where
the adversary tries to distinguish between ciphertexts encrypted
to (é,m) and (i + 1,1) when 1 < i < m.

Lemma 1: Under the asymmetric decision 3-party Diffie-
Hellman assumption, there is no probabilistic polynomial time
adversary that can distinguish between an encryption to recipi-
ent (4,7) and {4, + 1) in the index hiding game for any (7, 7)
where 1 <7 <mand1 < j < m with non-negligible probabil-
ity.

Proof: Suppose that there exists an adversary A which
can distinguish between an encryption to recipient (4, 7) and
(4,7 + 1) in the index hiding game with advantage . We then
build an algorithm B which uses A to solve the asymmetric de-
cision 3-party Diffie-Hellman problem. On input (g, g2, g°, h,
h%, ha®, he, T) € G2 x G3, the goal of B is to output 1 if
T = h®* and 0 otherwise.

The index (4, j) is given to both A and B. In simulation, A
will eventually behave in one of two different ways:
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CaseI: A will output a bit § = 0 and specify a target set S
where (4, j) € S. In this case, B needs to generate all secret
keys, except the key K, ).

Case II: A will output a bit § = 1 and specify a target set S
where (4, j) ¢ S. In this case, B needs to generate all secret
keys.

At this point B does not know how A will behave among the two

cases. Thus, B needs to guess which case it will be in. Since B’s

guess will be independent of which case A selects, B will be

able to continue the simulation with probability 1/2 in Query
phase. We describe how B will behave in each case. We note

that this proof approach follows from [10].

Casel

» Setup: B selects random exponents {r;, ¢;, ov;, 5; } 7%, in Zp.
It sets up the public key elements as

Ey=g", By=g", -, E;=(¢")", -, Emn=g™
Hy=h", Hy=h%..-, Hj = (h)%9,---, Hy, = h°™,
U, :951, U2:gﬂ2’...? U; :gﬁj,...7 Um:gﬁm

Vi :hﬁ’l’ nghﬁz,-", Vj:hﬂj,~~~, Vm:hﬂm7

Ay =e(g, h)*, Ax=-e(g,h)*, -, Ay =ce(g,h)*"

Next, B chooses random ¢, € Z, for all (z,y) # (i,7)
and computes the private key K ,y for user (z,y) as

K(I,y) = (dm ys dgy? diy oy dy— 1ady+1>'”adm)
o

[ O'
Vs Vim y),fv#l y#J,

(A= Ry oo V| B, V7™ VY
x O, . .
a Vy"rly?"'uvm y)7x:l,y5£;7’
(e e, o, V7oV,

Vya-ifiyf"a T;‘Lzyy)a {II#Z, y:]

The public key and private keys have an identical distribution
to that in the actual construction, because all the exponents
are chosen uniformly at random.

» Query: A gives a bit 5 as the query. If § = 1, the simulation
aborts. Otherwise, 3 continues the simulation.

» Challenge: A outputs a message M € Gr and a target
set S. Then, B plcks random exponents sy, 01, 0o, 03, 84,
{o=}0 ., {/\y}y and {2z 1, 22,2, 22,3, 22 4}36 110 Zp, un-
der a constraint that 6,63 — 6,64 # 0 in Z,. Additionally,
B obtains s under equation f3s; + 8452 = 0 in Z,. No-
tice that s itself is not distributed identically to that of real
scheme, but this will not be a problem in simulation (which
we mention below).

For each column y, B constructs column ciphertexts (Cy71,
Cy,2) as follows.

Ify<j: Cy1= (h“”) e hcwh‘bA
Cy 9= (hab) ; hcyszh 01y
Ify=j: C,1=T%(he)*,

Cy1 = T (h%)%2.

433

362
Ify>j: Cyl_(h“b) 5 hev1,

cyb1
Cya = (W)~ 5" hevea,
Here, B sets 51 = s1+02ab/c; and 5 = s;—61ab/c;. Note
that s7 and So include two random exponents ab and s; that
are enough for random distribution of 57 and 52. Thus, the
dependence of so (not 52) is not a problem. If T' corresponds
to heb¢, then

Cj71 — Teg(hc)c]-sl — (habC)Oz(hC)cjsl

6oab -
= (h%)" e = HY,
Cj,Z _ T—91 (hc)stz — (habc)—91 (hc)stz

8iab

_ (hcjc)52‘c_j — ngz.

On the other hand, if 7" is random, i.e., 7" = h**¢h" for some
(unknown) r € Zy, then

Cj,l — T02 (hC)stl — };1—]31}2,927“7
Cjz =T~ (he)5%2 = H*h™0"

where the exponent r serves as a random exponent A; € Z,.
Without loss of generality, we assume that the target set S is
divided into subsets S, for £ = 1,---,m. For each row x
the algorithm constructs row ciphertexts (R, 1, Rz 2, R 3,
R, 4, B) as follows.

Ifz<i: Re1=g"", Rea=g"? Rps=g""
R$,4 = ( H Uk:)zw,S’ B;z; — A;z,zl'
keS,
If T = 'L Rz,l = gTwes‘i’x’ Rx,2 — gT194¢a:7
8461 ¢z
Rog = () ™" 5,

646
93027 4%‘1’1)

Rx74 — (gb>(2kesm Br)(

B, = Me(g", h)a’”wwr%),
Ifx>i: Ryn= grefres Rpo = g'=029e

Ry = glisi+02s2)6s

Ry 4 = gXres, Be)(Brs1+0252)90

B, = Me(g, h)az(6151+9232)¢$.

When z = 1, B sets 53 = 63b, 54 = f4b, and 51 = ¢;/ab.
Then, the row ciphertexts can be computed as

9359 ) )
Ry = (g"%) " = gni®,

[

aq fabi 'y
Rip = (97%) @5 = gni®d,

B3b(s1+ 2220 ) +04b(s2 ~ 112%) | &1
Ri,S = g[ BT ey 3 ] b

; (6362—6461) (&5
b)(93$1+9452)%(gab2) 3 2°j 471 (E)

= (g
(6202—048,) 2L

=(¢" %,
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o Part A: Recipients with entry (z,y) such thati <z <mand1 <y < j.

e(Rﬂ!?,hCy71)e(R$,27Cy,2>e( z,3s :Ey)

e(Be3, Ky )
e(gr;ﬂlqﬁz , hevst hO2Xy } (gmemm hcus2 =Py )6(( Hzes Uz) (B1514+0252)0, 7 ha’”'y)
= e(g(elsl+9232)¢z how hracy Hzesx O'a:,y) Bac

6(9(0131"'0232)%, hrmcy)e((HiGng i)(9131+6232)¢$? ham,y) 5
6(9(9131'{'9252)(?5%, hazv)e(g(9131+0252)¢w’ h"wcy)e(g(9131+9292)¢m, HiESx hﬂz‘aw,y) ®

— 1 Me(g, h)am(9181+9282)¢m

- e(g(f1s1+0252)¢x hoe)
=M.

e Part B: Recipients with entry (x,y) suchthat: <z <mandj <y < m.

e(Rz,1,Cy1)e(Re2,Cy 2)e(Re 3,y )
(B Klzy)

~ e(grefids, hevst)e(gr=tade hcysQ)e((Hiesm Ui)(9131+0232)¢x’ ham'y)B

) elg®ertteie heehrees [, V™) s
8(9(0181+9282}¢I, hrmcy)e((l—[‘ Bi )(91314—0252 , hoew)

€Sy
e(gWrs1t02s2)da ho=)e(g(frs1+0252)0a h?”:ccy)e(g(9181-i-9282)<i3:c7 HieS hﬁiUm,y)Bx

Bs

: oo (B151+6252)¢
6(9(9151-{-9232)@57 h%)Me(g, h) 181+0252)
= M.
Ria = H gﬁk) {GSb(glJr%féHe"b(sz“ elab)] & It sets up the public key elements as

keS8,

— g™ — g i E=(¢®%. oo B = g™
g(Zkeszﬁk)b(eeﬂz—@ﬁz)% B g E2=g ’HIEQ (g) ’ » Em =g

Hy = hCl: Hy = k821"'1 H} = (hC)ij"'a Hy, = hcm7
Ul :gﬁla U2 :9525'”7 UJ = (ga)ﬁja"'y Um :gﬁma
—0401) 2 Vi=h?, Vo=hP2 o V= (WP, Vi = BPm,
A= 6<g,h)al7 Ay = 6(9, h)az’. Ay = 6(97 h’)am

<gb)(zke55D 5k)(9392—9491)‘§—j

?

B; = Me(g, h)aib(osez
¢,

= Me(g®, iL}ai(9302_0491)c—.3?.

Next, B chooses random o, , € Z, for all (x,y) and com-

Next, when z > 14, BB sets ¢, as it is. Recall that 8 and 6, are putes the private key K, ) for user (x,y) as
already determined during the computation of the column
ciphertexts. Then, it is sufficient to check that Koy = (dy  df s diyody_1,dyi1, - dim)
R — gOsi+02s0)6s _ (010t 222 402000 - 22 o, (ARt B, W2 VY
z,3 g ~ ~ g ‘/y-ily’”. ery)7m#3 y#.]’
— g(§1s1+92sz)¢x_ (haz (ha)mcyvam Y pew, Vgx v V;/ajiy,
Oz.y Oy . .
If T is h®*, then the challenge ciphertext indicates the en- V_;’“ ’g‘ o )7 x;- by y;w
cryption to (7,); and if T' is random, then the challenge (ho= (he)T=ew Vy =¥ he, V728, VT,
ciphertext indicates the encryption to (i, j + 1). = VI, Vi), @ A, y =g,
» Guess: A outputs a guess b’ € {0,1}, and then B outputs (hoe (h@)Pv0z | hoow (he)™ 5L
the same value to the asymmetric decision 3-party Diffie- 571%%, ' By—1racy
Hellman challenger. It is easy to see that B’s advantage in T () TR e e ] (0 I
the reduction is straightforwardly taken from .4’s advantage. hBv19e (1)~ M e
Case 11 erz«:y ) )
» Setup: B selects random exponents {r;, ¢;, a;, 3;} ™ in Z,,. \ hfmee (he) ™ )y z=1iy=j.
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6(81,17 Cy,l>6(Rcc,27 Oy,Q)e(RJKﬁ, dg,y)

(Rei K, )

B

e(g"=%?e, hvot)e(gm=049=, v )e(([[,cq, U

435

o Part C: Recipients with entry (z,y) suchthatz = 7and j <y < m.

U) (0351+0452)¢0 7 hc,x&)

6(9(83514'9452)‘%, haz hrecy H
elg O s, s )e(([]

1€,

o=y By
i€Sy Vi )

51)(6331+9482)¢x 7 hax‘y)

1

6(({](9331"*'94‘92)#’117’ hax)e(g(Q&ﬂ }‘0432)‘33:.\67 h7'm(3y)e(g(9331+9482)¢a1’ H’iES hﬁiﬂa;,g)B7

— Me(g, h)aw(9331-r9482)¢m

6(9(9351+9452)¢x’ th)
=M.

e(Ry1, Cy1)e(Ra 2, Cy2)e(Ry 3, d} )

(e Ky )

~ 6(97'::093%7 heust h(?g)\y)e<grgp04¢m’ heyse h—é)lky)e(( HieSm Ui)(0331Jr-é)zzsz)fﬁ;c7 hygmm)

B,

e Part D: Recipients with entry (z,y) suchthatz =zand 1 < y < j.

e<g(9381+9452)¢m’ hoa BTty H@egm ‘/iﬂa:,y)

e(g, h)rzézf\y(9293-9194)6(9(9351 +9452)¢m‘( hT=Cy )e<( H

By

ses, 7))

€(g7 h)riéz‘;\y (9293-—9134)
= 6(9(0351-&-6452)%’ h“m)

= e(g, h)mqﬁmky(%@swél%)M_

e(g(Oasitbas2)da haf)e(g(9331+9452)¢f, hr=cy)e(glfss110452)6 HéES hBio=.y) Be

Me(g, h)am(9351 +0482) 00

Recall that 8,63 — 0,6, # 0in Z,,, in which case the resultant value in the part D is not equal to the message M.

In case when z = ¢ and y = j, B implicitly uses a random
Gi,j = 04,5—1icjc/B; € Zy. Then, the first element in K, ;)
is verified as

ricsc

haih(TiQ)(CjC)‘/;ai,j _ haih(mcj-)(ac)(hﬁja)(oi,j‘ 75 )

= hoe(he)BiTes

The public key and private keys have an identical distribution
to that in the actual construction, because all the exponents
are chosen uniformly at random.

Query: A gives a bit 5 as the query. If § = 0, the simulation
aborts. Otherwise, BB continues the simulation.

Challenge: A outputs a message M € Gr and a target
set S. Then, B picks random exponents sq, b1, 02, 03, 04,
{Qsa:};n:i’ {Ay};;llv and {21,17 21,2y 22,3 Za:,4}zm_:11 in va un-
der a constraint that 6,63 — 6,64 # 0 in Z,. As before, B
obtains s; under equation 35, + 0485 = 0in Z,,.

For each column y, B constructs column ciphertexts (C,, 1,
Cy,2) as follows.

cy by
Ify <j: Oy,l — (hab) o5 Rtvst h02)\y7
cy By

Cy 5 = (hab)_ *éj hc932h~01/\y.
Ify=j: C, =T%(h%)9%,
Cya =T 0 (h)s%.

by 202
If Yy > ] Cy,l = (ha ) &5 hcy.ﬁ’
Cpa = (he) ™ 5" pevs,

Asincasel, Bsetss; = s1+02ab/c; and 5y = so—01ab/c;.
If T' corresponds to h%*°, then

'j,] - Toz(hc)cj81 — (habC)Qg (hn)n}'sl

i 31-?05?‘9 _ 7
B (h‘J‘) i o= H;l)
Cj 5= T’ol(hC)CjSQ — (habc)~91 (hC)cst
8yab

= (h9)? T = HE,

On the other hand, if T is random, i.e., T = h**¢A" for some
(unknown) r € Z,, then

Cj,l - T92<hc>cjsl - I{]?l hf)gr7
Cro = T8 ()97 = RO

where the exponent r serves as a random exponent A\; € Zp,.
For each row z the algorithm constructs row ciphertexts
(Rz.1, Ry 2, Ro 3, Ry 4, By) as follows.

Ifoe<i: be‘el = 921,1’ Rw,2 = gzz,27 R:E,?) = gzmﬁ:

Rea= (] Ux)™*, Be=A2+
) kGSz
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If L= Rz,l f— gra:93¢m’ R.’E,2 f— g"'m94¢’m?

— Sa
Rpa= (") *" "%,

Rp4= (gb)(Ekes, ﬁk)(9392—6491)%_;‘

{23 2— tz
B, = Afe(gb, h) (0026401 .

Rx71 = g'r 19 , R.’t,2 — g’r 2¢ ,
Ros = 9(9161+9232)¢m’

R:r,,4 = ( H Uk}{0181+9282)¢“’

keS,
B, = Af[e(g, h)ax(9151+0252)¢z.

Hz>i:

When x = 1, B sets 63 = 03b, §4 = 64b, and (;NSZ- = ¢;/ab.
Observe that j ¢ S; since (4,7) ¢ S. This means that
Y res, Bk does not contain the value 3;a and R; 4 can avoid
the term g“b, Also, when = > 4, the exponent of R, 3 be-
comes (8151 + 0253)dy = (6181 + 6252) ¢, which is known
to 5. Thus, R, 4 can be computed regardless of whether j is
included into each subset S,

» Guess: A outputs a guess b’ € {0,1}, and then B outputs
the same value to the asymmetric decision 3-party Diffie-
Hellman challenger.

If T is he*°, then the challenge ciphertext indicates the en-
cryption to (1,7); and if T is random, then the challenge
ciphertext indicates the encryption to (4,7 + 1). Then, it is
easy to see that B’s advantage in the reduction is straightfor-
wardly taken from A’s advantage.

]

Lemma 2: Under the asymmetric decision 3-party Diffie-
Hellman assumption and the XDH assumption, there is no prob-
abilistic polynomial time adversary that can distinguish between
an encryption to recipient (¢, m) and {¢ + 1, 1) in the index hid-
ing game for any 1 <4 < m with non-negligible probability.

To prove Lemma 2, we need to create complicated hybrid
games as in [11] and [14]. With the Encrypt, g algorithm de-
scribed in the previous section, we refer to rows with ciphertexts
generated with random exponents as ‘less-than rows,” rows with
ciphertexts involved with exponents (f3,6,) as ‘target rows,
and rows with ciphertexts involved with exponents (6y,62) as
‘greater-than rows.” In addition, ‘encrypt to column j* means
that column ciphertexts (C, 1,Cy 2) for all y > j are formed
without attached components (h%2*v h=%12), Using these ter-
minologies, the hybrid games are described as follows.

o I';: Encrypt to column m, row i is the target row, row ¢ + 1
is the less-than row.

o TI's: Encrypt to column m + 1, row 1 is the target row, row
i + 1 is the greater-than row.

o I's: Encryptto column m + 1, row ¢ is the less-than row, row
i -+ 1 is the greater-than row.

o I'y: Encryptto column 1, row i is the less-than row, row ¢+ 1
is the greater-than row.

e TI's: Encryptto column 1, row ¢ is the less-than row, row 1+ 1
is the target row.

Note that I'; corresponds to the encryption to (i,m) and I's
corresponds to the encryption to (¢+1, 1). The following claims
show that it is computationally infeasible for an adversary to
distinguish between the sequence of games from I'; to I's.

Claim 1. Under the asymmetric decision 3-party Diffie-
Hellman assumption, there is no probabilistic polynomial time
adversary that can distinguish between games I'y and I'; with
non-negligible probability.

Proof: This claim can be proved by applying the result of
Lemma 1. O

Claim 2. Under the asymmetric decision 3-party Diffie-
Hellman assumption, there is no probabilistic polynomial time
adversary that can distinguish between games I's and I's with
non-negligible probability.

Proof: Suppose that there exists an adversary .A which
can distinguish between games I'; and ' with advantage €. We
then build an algorithm B which uses A to solve the asymmetric
decision 3-party Diffie-Hellman problem. On input (g, g%, q°,
h, b, h®® h®, T) € G3 x G35, B outputs 1if T = h®* and 0
otherwise. B interacts with A as follows.

» Setup: B selects exponents {ck, Bx }7o; and {7k, e} ity gt
in Z,, at random. It sets up the public key elements as

Ey=g", Ep=g", -, E;=g%-
Hy = ho(h9)™, Hy=h2(h)7",- -+, Hp = h(h9) 7,
Uy = 951’ Uy = 91327...7 Uy, = gﬂm’
Vi = hﬁl) Vs :hﬁz)...’ Vi = hﬁm’
Ay =e(g,h)™, Ay =e(g,h)*,- -,

Ai =e(g® h®), -, Ap =e(g, h)*.

[
‘s Em =g,

Note that r; = a and o; = ac € Z,. B additionally selects
Ouy € Zy for all (z,y) and computes the private key Kz )
for user (z,y) as

! 7
K(z,y) = (d‘nya d;c,ya dla o ';dy—l, dy-i—la M) dm)
— . T,
(hazhrzcy(hc) Tw‘/yﬂ'm;y, ham,y? Vl z,y,,,_,%jiy7
Ty+1 T,y N
V;;—ig—[l 7"'7{’/;%'&19 )’m#l’
= , {o) a,
((ha)cyvy =y hcrx,y? f =Y Vy—w’lyv
Ty 1 T,y —
Vot Vme), o =i

The validity of d/, , such that z = i can be checked as d;, , =
hecplev=clay 7=y = (haYewVJ*¥. A is given the private
keys K, . except (x,y) # (i, ). As before, the public key
and private keys have an identical distribution to that in the
actual construction.

» Query: A gives a bit § as the query. If § = 1, 8 gives out
Kigy-

» Challenge: A outputs the message M € Gp. B picks ran-
dom exponents s1, sz, 01, 02, 63, 04, {dz}isis {A}yers
and {2, 1, 2.2, Z2.3, %24} 5y in Zp, under a constraint that
9293 - 9194 74 0in Zp.

For each row z, the algorithm constructs row ciphertexts
(Rx,l, Rm’g, Rz,s, Rm74, Bx) as follows.

Ifx <i: Ry1=9"', Ryo=g™? Ry3=9"?,

Rea= (] Us)™* Bo=AZ"
keS,
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fo=i: Rey=(g")"%,  Ryo=(g""%,
Rx,S _ (gb)(0392—9491)¢zg(9351+9432)¢z7
Ros = (g)(Sress (03020006
g(zkesm Bi)(0351+8452)s
By = Me(g,T)\%%~0400)%-
e(ga’ hc)(0351+9482)¢m.
a>i Ryy=g%% R, = grf:0:

Ry3 = 9(9151+0282)¢m

b

Rz,4 - g(zkesm Br)(01514+0282) ¢

?

B, = ]\46(g7 h)az(9151+9232)¢z'

Define 57 = $1-+65b and §9 = so—01b e Zp. When x = i,
B sets ¢; asitis. Then, if T = h®, then the row ciphertexts
can be computed as

Riy = (g)"% Ry =

Ris = g [93(81 +02b)+-04(s2—061 b)] @i

(ga)94<l5i7

_ (gb)(9392—<9401)¢7i9(0351%—19452)451'7

Ris= ( H Uk) [93(S1+925)+94(52v915)} @i
i,4 =
keSy
=g )(Zkgsz Br)(6262—64601) dh (XChes, 5k)(9381+9482)¢z

B; = Me(g, h)* [b(9392—9491)¢i+(9351+0452)¢i]
= Me(g, T)(9302_0401)¢i6(9a’ hC)(0351+9432)¢z.

On the other hand, if T is random, then B; is also randomly
distributed. Thus, row 7 becomes the less-than row. Next,

when x > 1, B sets ¢, as itis. Then, as before, it is sufficient
to check that

Rys = gl(si400)40:(00-00) 00 _ (0151165500,

=g

For each column y, B constructs column ciphertexts
(Cy,1, Cy2) as follows.

Cy,l — hCust (hc)*sl hez,\y7 Cy,Z — RCus2 (hc)—Sthel)\y.

The column ciphertexts are valid under randomness Xy =
(c—cy)b+ Ay € Zyforally € {1,---,m}. To see this,

Cy 1= h(cy*C)($1+92b)h92 [(C*cy)bﬂ—)\y]
= RSt (hc)‘sl h6)2,\y7
Cy 9 = h(cy*C)(32-91b)h—91 [(c—cy)b+)\y]
= hCvs2 (hc)—52 h701>\y )
» Guess: A outputs a guess b’ € {0, 1}, and then B outputs

the same value to the asymmetric decision 3-party Diffie-
Hellman challenger.

If T is he®°, then the challenge ciphertext corresponding
to row ¢ indicates the target row; and if T is random, then
the challenge ciphertext of row ¢ indicates the less-than row.

Thus, we see that B’s advantage in the reduction is straight-
forwardly taken from A’s advantage.
O

Claim 3. Under the asymmetric decision 3-party Diffie-
Hellman assumption, there is no probabilistic polynomial time
adversary that can distinguish between games I's and 'y with
non-negligible probability.

To prove Claim 3, we need to further refine our hy-
brid games between games I's and ['y. Let I's (=
I'3), T3 m, -+, I's.1(= T4} be the hybrid games. In the game
I'3 ;, all column ciphertexts (Cy, 1, Cy 2) are well formed with-
out attached components for all y such that j < y < m. As
in the proof of Lemma 1 (and Claim 1), it is sufficient to prove
the indistinguishability of games I's ; and I's ;4 for j where
I<j<m.

Proof: Suppose that there exists an adversary 4 which
can distinguish between games I'; ; and I's ;1 with advantage
€. We then build an algorithm 5 which uses .4 to solve the asym-
metric decision 3-party Diffie-Hellman problem. On input (g,
g%, g°, h, h®, h?® ke, T) € G$ x G35, B outputs 1 if T = haobe
and 0 otherwise. B interacts with A as follows.

» Setup: B selects random exponents {7, ¢, ok, B}, in
Zp. It sets up the public key elements as

Ey=g", Ey=g",--, Ep=g™
Hy=h", Hy=h",.--, H=(h9)%9,.-, H,, = h®™,
Ulzgﬁﬂ nggﬂ27---, Um_gﬁm
Vl:hﬁl, 1/2:]152,.‘.7 m:hﬁm’
Ay =e(g,h)*, Ay =e(g,h)**, -, Ay =ce(g,h)*m.

B chooses random o, ,, for all (z, y) and computes the pri-
vate key K, . for user (z,y) as
K( (d;y dgyv dlv"' dy lady-‘rl"'
(hax hT=cy VO-T Y haz v, ‘/UCI3 y’ o y—1>
%?T17"‘7 Uzy) y#]v
(B (heyren V= o, VTR e
VO V) g =,

SEEE
The public key and private keys have an identical distribution
to that in the actual construction, because all the exponents
are chosen uniformly at random.

» Query: A gives a bit 5 as the query. If § = 1, B gives out
K-

» Challenge: A outputs the message M € Grp. B picks ran-
dom exponents s1, s, 01, Oa, 03, 04, {Pz } 7,1, {/\y}y 1
and {24 1, 23,2, 22,3, Zz,4} 5—1 in Z,, under a constraint that
9293 - 9194 75 0in Zp.

For each column y, B constructs column ciphertexts
(Cya, Cy,2) as follows.

adm)
o adied

Ify<j: Cyl—(h“b) E lLCyslh()Q’\

Cy 5 = (hab) 9 hCySQh—Ol)\
Ify=j: Cyq=T%(h%)>",
Cya =T " (h).
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ay by
Ify>j: Cypy= (h“b)“%“h%ﬂ
ey
Cy 9 = (hab) hcysz
As in the proof of Lemma 1, B sets 57 = s; + 62ab/c; and
S2 = 82 — b1ab/c;. If T is ha®e, then
Cj = T()z (hC)Cj51 - (habC)Oz (hc)cjsl
. faab —~
= (b9 TS = Y,
Cj 9 = T-—91 (hc)cjsz o (habc)—-él (hC)CjSZ

= (thC)sz_ﬂlcfﬁ = H2.

J

On the other hand, if 7" is random, i.e., T = h%°h" for some
(unknown) r € Z,, then

CJ L= T92 (hc)cj 81 Hfl h92r7

Cja=T " (h)% = H*h~"
where the exponent r serves as a random exponent A; € Z,.

For each row z the algorithm constructs row ciphertexts
(Rs,1, Rz 2, Ry 3, Ry 4, By) as follows.

Ifo<i: Ry1=g"", Rop=g"? Ru3=g™",
Roa=( H Uk)zs’s, B, = A%,
k€S,
If €T o 'i: Rm:]- m gm{)“bw’ l%m72 - gm9z¢x,

Ry3= g(91S1+02b‘2)¢x’
R:EA — g(zkesm Bk)(8}51+9252)¢m’
— Me(g’ h)aw(9151+6232)¢$'

When x > ¢, B sets ¢, as it is. As before, it is sufficient to
check that
[91(814-%%7)'%92(52- %J&.?)] da

Rua= 9(91514—9282)% =g

= g(el F1+0252) 00

» Guess: A outputs a guess b’ € {0,1}, and then B outputs
the same value to the asymmetric decision 3-party Diffie-
Hellman challenger.

If T is h°b, then the challenge ciphertext indicates the en-

cryption in the game I's ;; and if T is random, then the

challenge ciphertext indicates the encryption in the game

I3 1. B’s advantage in the reduction is straightforwardly

taken from .A’s advantage.

]

Claim 4. Under the XDH assumption, there is no proba-

bilistic polynomial time adversary that can distinguish between
games 'y and T's with non-negligible probabiliry.

Proof: Suppose that there exists an adversary .A which can
distinguish between games I'y and I'5 with advantage . We then
build an algorithm B which uses A to solve the XDH problem.
On input (g, g%, g%, h, T) € G% x G2, B outputs 1 if T = gob
and 0 otherwise. B interacts with .4 as follows.

» Setup: B selects random exponents {r, ck, e, Bk}

"

fe D
Zy. It sets up the public key elements as

Ey=g", Ea=g"- En=9",
Hy =R, Hy=he, -, Hpy = he",
U129L317 nggﬂ"’,-", Um:gﬁm
Vl___hﬁx’ Vz=h52,"', Vm=h6m,
Ay =e(g,h)*, Ay =e(g,h)**, -+, Ay =celg, h)*™.

B selects a random o, € Zp for all (x,y) and computes
the private key K, ., for user (z,y) as follows.

K(E,y) (d;c y? d; Y dla s dy—l, y+1y° m)
= (hamhrzcyvyo'm v Qo= v, O'f Yo, V;;'_Ily’
Vyﬁf?”'? Vi )7 VI, Y.

The public key has an identical distribution to that in the ac-
tual construction, because all the exponents are chosen uni-
formly at random.
Query: A gives a bit 5 as the query. If § = 1, B gives out
K- ‘
Challenge: A outputs the message M € Gr. B picks
random exponents s1, sz, 01, 02, 03, 04, {¢pa};_; 4, and
{201, %22, %43 %z4}—q in Zp, under a constraint that
0203 — 6104 # 0. Define 67 = 1a+ 03 and 0y = ra+04 €
Zy.
For each row z the algorithm constructs row ciphertexts
(Rz,1, Ry 2, Re 3, Re 4, Bz) as follows.
If ¢ <i:

R;L‘,l = gzmjla Rx,Z = glma’ R&:,S = gzm,s’

Roa=( ] U™, Ba=Ap+

keS,

fxz=i+1:

Ry = T7=01%7(g")r=0e%,

R’JZ g = Tra:92¢:u (gb)rm94¢m
ch 3=T 1(8181+0252) by (gb)(sl()3-i~8294)4’>m7
Ry = T(Ekes, Pr)(brs1+8252) s

. (gb)(zkgsz Bk)(sl€3+5294)¢39’

B, = Me(T, h)aw(9151+6252)¢m e(gb, h)az(3193+5294)¢m.
Ifx>i+2:

a

(g 20102 ”'193¢‘z’

x2—<9

=g
Rm,4 = (g ) Eokesa ﬁk)((hsﬁ@zhz)%

g(zkesm 5’€)(51‘93+3294)¢m,

)™
a)rm{?zqﬁz r5010z ,
)

a\(0151+0252) P (31 03 +3204)¢w

B, = Me(g*, h)az(0151+9232)¢‘1 e(g, h)am(5193+5204)¢x.

For each column y, the algorithm creates column ciphertexts
(Cy1,Cy,2) as follows.

Cy,l = h%% Cy’z = h%% forVy.
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When x > i+ 2, B sets ¢, as itis. Then, the row ciphertexts
can be computed as

R,1 = g7"ac(91a+03)<15I — (ga)rm91¢zgrm03¢z,
R, = gTz(92a+94)¢'m — (ga)T192¢a:gTa:94¢w,

Rys= g[(91G+93)81+(92a+04)$2] b

— (ga)(9151+9282)¢>zg(8103+3204)¢1 7

Rua = ( [ ) Contoomsmassale

keS,
_ (ga)(zkesz Br)(O181+0252) s

g(Zkgsx Bi)(8103+5204) ¢y

B, = Me(g, h)am [a(fh51+9232)¢z+(8193+5294)¢z]
= Me(ag® h)%=(0151+0252)¢ an(s103+5204)da
e(g, h) e(g, h) .

Next, when x = 7 + 1, B sets ¢,+1 = ¢ip1b € Z,. If
T = g%, then row i + 1 is the greater-than row and thus B is
playing game I'y with .A. On the other hand, if T is random,
ie.,T = g(““)b for some (unknown) non-zero r € Zy, then
row % + 1 is the target row under randomness

03 =601(a+7)+6s,  05="0x(a+tr)+ 0

The distribution of these two exponents is identical to that
of real scheme, _since two random values 817 and for are
embedded into 93 and 94 In addition, B has that 505 —
01 94 # 0, because

5253 — 5154
= (02@ + 94)(91((1 + T) + 93)
- (91(1, -+ 93)(92(0, + T)+04)

= (9104 - 0203)7"

where 6164 — 6203 # 0 and 7 # 0 (as T is random). In
this case, the validity of row ciphertexts can be checked as
follows.

Rij1 = Tri+101¢i41 (gb)ri+193¢i+1

- (g(a+T)b)Ti+191¢i+1(gb)m+193¢i+1 — g’"i+1§3$i+1’
Rip1o = TT+1020i41 (gb)ris 164614

_ (g(a+r)b)ri+102¢i+1(gb)ri+104¢>i+1 _ gri+1§44~5i+17
Ripr s = T@rs140252)0u01 (o) (5203 +5200) 9111

— (g(a+r)b)(9131+0252)¢,'+1 (gb)(3193+5294)¢1+1

- 9(5381+§4S2)$i+1’
Rij1a= T(Ekes, Br)(0151+0282)di1

) (gb)(Zkesz Br)(5103+5204) it
_ g(Zkesm Bi) (0351 +8452)bit1

_( H Uk)(§381+§432)$i+17
kES,

Bi+1 = M@(T, h)ai+1(9131+0232)¢i+1

. e(gb, h)ai+1(3193+8204)¢i+1

= Me(g h)o‘i+1 [(a+r)b(6151+0232)¢i+1+b(8193+5294)¢i+1j|
)

— ]\46(97 h)ai+1(§351+§452)$,‘+1'

Thus, B plays game I's with A.

» Guess: A outputs a guess b’ € {0,1}, and then B outputs
the same value to the XDH challenger.
If T is g%, then the challenge ciphertext corresponds to
game I'y; and if T is random, then it corresponds to game
I's. It is easy to see that B’s advantage in the reduction is
straightforwardly taken from .4’s advantage.

0O

B. Message Hiding

Theorem 2: No adversary can distinguish between two ci-
phertexts when encryption is done to the (m + 1, 1).

Proof: The message hiding game considers an adversary
who tries to break semantic security when encryption is done to
the index (m+1, 1). However, in this encryption, all row cipher-
texts will be constructed with randomly chosen exponents and
thus be independent of two messages challenged upon. Thus,
the adversary has 0 advantage in deciding which message has
been encrypted. O

V. PERFORMANCE COMPARISON

In case of ABE scheme. We present performance compari-
son between the BW-ABE scheme [10] and ours. As pointed
out in [14], we consider our ABE scheme as a key en-
capsulation mechanism (KEM) which leads to saving the
ciphertext size. In the resultant KEM (using the nota-
tion of ABE scheme in Section III), the set {B,},
is not included into a ciphertext, and instead user (z,y)
can recover a key K, through the calculation of K, <+«
€(Re3, K[, 1)/ e(Ra1,Cy)e(Rez, Cy2)e(Re 3, d7 ). When
encrypting to a position (¢, j), the key K, is computed as fol-
lows.

R/ (Ii GT, z < Z-’
K, = A(9331+9432)¢z eGr, z=i,
A(9181+92S2 b €Gr, z>i.

Then, the key K is used as a symmetric key to encrypt a mes-
sage encryption key K for each row z, so that all targeted recipi-
ents get to share the same key K, In reality, the encryption algo-
rithm Encrypt , 55 requires to compute { K, }7-_; in G and the
ciphertext contains { Sy, (K)}7,, instead of {B,}™,, where
S is a symmetric key cipher. Since |Sk_ (k)| = 128 bits (using
AES) and | B, | > 1024 bits (see Table 2), the KEM approach is
clearly more transmission-efficient than the case including the
set { B, }™, of elements in G'7. This approach can also be ap-
plied to the BW-ABE scheme in the same way.

Under the consideration of the KEM approach, Table 1
presents overall performance comparisons between the BW-
ABE scheme and ours. For simplicity, we do not consider sim-
ple operations such as multiplication and symmetric key en-
cryption. We note that the BW-ABE scheme and ours are fully
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Table 1. Performance comparison between the BW-ABE scheme and ours for N = m?.

BW-ABE

Our ABE scheme

Group order

Composite pg

Prime p

Tracing type

Public tracing

Public tracing

Ciphertext size

6m len{G) + m len(SE)

4m len(G1) + 2mlen(G2) + mlen(SE)

Private key size

(m +1) len{(G)

(m + 1) len(Gp)

Decryption cost

4 pairings

4 pairings

Encryption cost

9m exp(G) + (m + 1) exp(Gr)

4m exp(Gy) + 4m exp(G) + (m + 1) exp(Gr)

p, g: Primes, len{SE): Output size of a symmetric key encryption,
len{G, G, G2): Size of one group element in G, G1, and G2, respectively.

exp(G, G1, G2, Gr): Exponentiation performed in G, G1, G2, and G, tespectively.

collusion-resistant and secure against adaptive adversaries. Ta-
ble 1 shows that the decryption costs are determined by four
pairing operations that are independent of N or m, and the en-
cryption costs are dominated by exponentiations that are per-
formed in G, G, Go, and Gp. To evaluate performance more
concretely, we use the cost results in Table 2, which was
present in [11]. Here, the pairing time is estimated by using the
PBC Library on its website.” Based on Table 2, the encryption
cost of our ABE scheme is roughly (1024310)m /(41601702 +
4160510% + 10243)m = 8.5 times faster than that of the BW-
ABE scheme, and the decryption cost of our scheme is roughly
3028/256 ~ 12 times faster than that of the BW-ABE scheme.
These encryption and decryption costs will become the impor-
tant efficiency factors of a tracing algorithm, which can be de-
rived from the ABE scheme.

Table 3 shows the efficiency result for N = m? when apply-
ing Table 2 to the BW-ABE scheme and ours. Here, we set the
output size len(SE) of a symmetric key encryption to 128 bits
by considering AES. Then, the ciphertext size of our scheme is
roughly 6272m/1828m =~ 3.4 times shorter than that of the
BW-ABE scheme, and the private key size of our scheme is
two times shorter than that of the BW-ABE scheme. If we set
N = 10% (i.e., m = 103), then Table 3 gives a more concrete nu-
merical result where our ABE scheme has a ciphertext of 223 kB
and a private key of 62 kB. Also, a decryption can be performed
within at most 256 ms.

In case of tracing algorithm. As explained in Section II,
BW [10] showed that a secure ABE scheme gives a trace-and-
revoke scheme, based on a general tracing method previously
introduced by [4], [26], and [27]. Since their conversion is
generic, we use our ABE scheme to obtain a new trace-and-
revoke scheme. Now, we provide a comparison of tracing time
between two tracing algorithms that are derived from the BW-
ABE scheme and ours. For reader’s convenience, we review the
tracing algorithm Trace” {Sp, PK, €), where a pirate decoder D
will decrypt all ciphertexts encrypted for a certain set Sp. For a
given N, A, and € > 0, the tracing algorithm works as follows.
1. Initialize set T" to the empty set.
2. Fori=1to N, do the following:
(a) For 8\(N/e)? times, the algorithm repeats the follow-

ing steps:

i. Sample M from the finite message space at random.

ii. Let C & Encrypt,pg(Sp, PK, 4, M).

2[Online]. Avaliable: http://crypto.stanford.edu/pbc/

Table 2. Cost of different operations.

Symmetric & Asymmetric &
order pg order p
Group order (v} 1024 bits < 160 bits
bits in G'1,
Grow element size (4 | 024D G: 1:8 bfts " Gl
e ! its in Gz,
roup element size (b 1024 bits in Gy 5 s i 2
1024 bits in Gl
Exponentiation time O(rb?) O{rb?)
Pairing time 757 ms < 64 ms

Table 3. Performance comparison for N = m?2.

| BW-ABE Our ABE scheme
. Symmetric & Asymmetric &
Pairing type
order pq order p
Ciphertext size 6272m bits 1828m bits
Private key size 1024m bits 512m bits
Decryption cost 3028 ms < 256 ms

3

ms = 107 seconds.

iii. Call oracle D on input C, and compare the output of
Dto M.
(b) Let p; be the fraction of times that D decrypted the ci-
phertexts correctly.
(©) Ifp; — Pys1 = €/(4N), then add ¢ to set T'.
3. Output the set 1",

For simplicity, we assume that the time for D to answer one
oracle query is the same as the usual decryption time. Then,
the total tracing time is estimated by N (8\(N/e)*(Tg +Tp))>,
where T and Tp are decryption and decryption times, respec-
tively. According to the above performance result, our ABE
scheme encrypts about 8.5 times faster and decrypts about 12
times faster than the BW-ABE scheme. As the total number N
(and thus m) of users is large, Tr will be definitely greater
than Tp because Tp is constant and Tg grows linearly with
m. However, if we consider precomputations for calculating ex-
ponentiations* and extra devices for parallelizing exponentia-
tions, we can assume that Tp = T at a certain setting for a
given N. Under this circumstance (as well as same level of pa-

3The asymptotic value O{N?3) can be made (almost) quadratic using binary
search instead of a linear scan [10].

4Such precomputations are possible since exponentiations in encryption can
be done, based on public parameters.



PARK et al.: FULLY COLLUSION-RESISTANT TRACE-AND-REVOKE SCHEME IN PRIME...

rameters such as A and e€), our tracing algorithm works roughly
(8.5Tg +12Tp)/(Tk + Tp) = 10 times faster than the tracing
algorithm from the BW-ABE scheme. This means that if it takes
30 days for the tracing algorithm from the BW-ABE scheme to
detect all traitors from D, our tracing algorithm can do the same
work in only 3 days.

VI. CONCLUSION

We constructed a new trace-and-revoke scheme that is fully
collusion-resistant and works in prime-order groups. Our new
scheme is publicly traceable and secure against adaptive adver-
saries. Our trace-and-revoke scheme was based on asymmetric
bilinear maps in prime order groups, and based on cancellation
effect same as in composite-order groups. To achieve the can-
cellation effect, we introduce a new trick to generate positive
and negative pairing values and cancel them out. We proved the
security of our scheme under the asymmetric decision 3-party
Diffie-Hellman and XDH assumptions.

Prior to our scheme, the earlier trace-and-revoke scheme of
BW [10] was the only scheme that is fully collusion-resistant,
but the BW scheme was constructed over composite-order
groups. By the difference of base group, our scheme can achieve
shorter ciphertexts and private keys, and obtain faster encryp-
tion and decryption and tracing time. For a subsequent work, it
will be interesting to design a new trace-and-revoke scheme in
prime-order groups with security proven from standard assump-
tions such as the decisional bilinear Diffie-Hellman and the De-
cision Linear assumptions.
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