Nano Carbon Material Based Electrochemical Actuators

탄소 나노 재료 기반의 전기-화학적 구동기

  • Cha, Ju-Young (Department of Mechatronics Engineering, Pukyong National Univ.) ;
  • Kang, In-Pil (Mechanical and Automotive Engineering Department, Pukyong National Univ)
  • 차주영 (부경대학교 메카트로닉스공학과) ;
  • 강인필 (부경대학교 기계자동차 공학과)
  • Received : 2011.09.24
  • Accepted : 2011.10.04
  • Published : 2011.11.01

Abstract

With the help of nanoscale materials like carbon nanotube (CNT), there is the potential to develop new actuators that will provide higher work per cycle than previous actuator technologies, and generate much higher mechanical strength. In this study, the electrochemical actuation characteristics of nano carbon materials were experimentally studied to develop electrochemical actuators. The electrochemical actuators were composed of aqueous NaCl electrolyte and their actuating electrodes were made of multi-walled carbon nanotube (MWCNT)/polystyrene composite and graphene respectably. Actuation is proportional to charging transfer rate, and the electrolysis with an AC voltage input has very complex characteristics. To quantify the actuation property, the strain responses and output model were studied based on electrochemical effects between the nano carbon films and the electrolyte.

Keywords

References

  1. Son, Y., Takemura, K. and Park, S., "Development of multi-DOF Ultrasonic Motor Using PZT," Journal of KSPE, Vol. 27, No. 4, pp. 53-62 , 2010.
  2. Tiem, M. T., Kim, J. H. and Goo, N. S., "Design of a Piezocomposite Generating Element and Its Characteristics" Trans. of KSME A, Vol. 34, No. 7, pp. 867-872, 2010.
  3. Lee, K. T., Kim, J. S. Kim, H. S. and Ahn, S. H., "Design and Fabrication of a Smart Flexible Structure using Shape Memory Alloy," J. of KSPE, pp. 789- 790, 2011.
  4. Lee, S. W., Chung, D. K., Song, K. Y., Kim, H. and Chu, C. N., "Manufacturing of Shape Memory Alloy Actuator using Wire EDM," J. of KSPE, pp. 149-150, 2010.
  5. Koh, J. S., Jung, G. P. and Cho, K. J., "Development of Biomimetic Gripper Using Shape Memory Alloy Coil Actuator and Composite Materials," J. of KSPE, pp. 591-592, 2010.
  6. Kim, S. W., Noh, M. K. and Cho, K. J., "The Flea Inspired Small-scale Jumping Robot with Composite and Shape Memory Alloy(SMA) Spring Actuator," Proc. of KSPE Autumn Conference, pp. 193-194, 2010.
  7. Kim, S. S., Ki, S. J., Song, H. D., Kim, H. I., Oh, I. K., Yang, S. M. and Kee, C. D., "Development of Bacterial Cellulose Actuator using Conducting Polymer," Proc. of KSPE Spring Conference, pp. 287-288, 2011.
  8. Oh, I. K., Jeon, J. H. and Wang, X. L., "Biomimetic Polymer Actuators and Their Applications," Proc. of KSME Spring Conference, pp. 57-60, 2009.
  9. Iijima, S., "Helical microtubules of graphitic carbon," Nature, Vol. 354, No. 56, pp. 56-58, 1991. https://doi.org/10.1038/354056a0
  10. Baughman, R., Cu, C., Zakhidov, A., Iqbal, Z., Barisci, J., Spinks, G., Wallace, G., Mazzoldi, A., De Rossi, D., Rinzler, A., Jaschinski, O., Roth, S. and Kertesz, M., "Carbon nanotube actuators," Science, Vol. 284, No. 5418, pp. 1340-1344, 1999. https://doi.org/10.1126/science.284.5418.1340
  11. Gao, M., Dai, L., Baughman, R., Spinks, G. and Wallace, G., "Electrochemical properties of aligned nanotube arrays: basis of new electromechanical actuators," SPIE, Vol. 3987, No. 18, pp. 18-24, 2000.
  12. Roth, S. and Baughman, R., "Actuators of Individual Carbon Nanotubes," Current Applied Physics, Vol. 2, No. 4, pp. 311-314, 2002. https://doi.org/10.1016/S1567-1739(02)00116-5
  13. Spinks, G., Wallace, G., Fifield, L., Dalton, L., Mazzoldi, A., Rossi, D., Kharyrullin, I. and Baughman, R., "Pneumatic Carbon Nanotube Actuators," Advanced Materials, Vol. 14, No. 23, pp. 1728-1732, 2002. https://doi.org/10.1002/1521-4095(20021203)14:23<1728::AID-ADMA1728>3.0.CO;2-8
  14. Fukushima, T., Asaka, K., Kosaka, A. and Aida, T., "Fully Plastic Actuator through Layer-by-Layer Casting with Ionic-Liquid-Based Bucky Gel," Angew. Chem., Vol. 44, No. 16, pp. 2410-2413, 2005. https://doi.org/10.1002/anie.200462318
  15. Torop, J., Palmre, V., Arulepp, M., Sugino, T., Asaka, K. and Aabloo, A., "Flexible supercapacitor-like actuator with carbide-derived carbon electrodes," Carbon, Vol. 49, No. 9, pp. 3113-3119, 2011. https://doi.org/10.1016/j.carbon.2011.03.034
  16. Lee, C., Wei, W., Kysar J. W. and Hone, J., "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, Vol. 321, No. 5887, pp. 385-388, 2008. https://doi.org/10.1126/science.1157996
  17. Xie, X., Qu, L., Zhou, C., Li, Y., Zhu, J., Bai, H., Shi, G. and Dai, L., "An Asymmetrically Surface- Modified Graphene Film Electrochemical Actuator," ACS Nano, Vol. 4, No. 10, pp. 6050-6054, 2010. https://doi.org/10.1021/nn101563x
  18. Liang, J., Huang, Y., Oh, J., Kozlov, M., Sui, D., Fang, S., Baughman, R. H., Ma, Y. and Chen, Y., "Electromechanical Actuators Based on Graphene and Graphene/$Fe_3O_4$ Hybrid Paper," Adv. Funct. Mater., Vol. 21, No. 19, pp. 3778-3784, 2011. https://doi.org/10.1002/adfm.201101072
  19. Mazzoldi, A., Rossi, D. D. and Baughman, R., "Electro-mechanical behavior of carbon nanotube sheets in electrochemical actuators," Proc. of SPIE Vol. 3987, pp. 25-32, 2000.
  20. Barisci, J., Wallace, G. and Baughman, R., "Electrochemical studies of sing-wall carbon nanotube in aqueous solutions," Journal of Electroanalytical Chemistry, Vol. 488, No. 2, pp. 92- 98, 2000. https://doi.org/10.1016/S0022-0728(00)00179-0