DOI QR코드

DOI QR Code

탄소나노튜브로 보강된 탄소섬유복합재의 제조 공정과 모드 1 파괴인성

Processing and Mode 1 Fracture Toughness of Carbon Fiber Composites Reinforced With Carbon Nanotubes

  • 김한상 (한국과학기술연구원 복합소재기술연구소)
  • 투고 : 2011.10.13
  • 심사 : 2011.10.24
  • 발행 : 2011.10.31

초록

탄소나노튜브로 보강된 고분자 수지에 대한 연구는 지난 20년간 활발히 수행되어 왔다. 또한 이를 이용하여 탄소섬유복합재의 물성을 증대시키기 위한 연구도 최근 그 영역을 넓혀가고 있다. 탄소섬유복합재는 탄소섬유의 비약적인 발전으로 섬유 방향의 기계적 물성은 상당히 만족할 만한 수준에 도달했으나, 수지에 의해 좌우되는 기계적 물성은 아직 기대에 못미치고 있다. 특히, 층간의 분리 (delamination)는 탄소섬유복합재의 가장 전형적이며 치명적인 파손의 원인중 하나이다. 이 층간분리에 대한 저항성을 알아보는 모드 1 파괴인성 실험 (혹은 double cantilever beam, DCB test)을 다양한 작용기로 기능화된 SWNT가 첨가된 탄소섬유복합재 시편에 대하여 수행하였다. 부직포 형태의 탄소나노튜브층을 이용한 시편의 경우 10.6%의 파괴인성 증대를 보였다.

For the last twenty years, nanocomposites composed of polymer matrices reinforced with carbon nanotubes (CNTs) have been an active research area. Also, the polymeric nanocomposites reinforced with CNTs are being investigated to be used matrices of carbon fiber composites. Carbon tiber composites have achieved advanced properties in the direction of carbon fibers due to enhanced carbon fiber properties. However, the matrix dominated properties need to be improved further to fully utilize the advanced carbon fiber properties. In particular, delamination is a typical and critical reason for fracture of carbon fiber composites. Mode I fracture toughness test which is also often called double cantilever beam (DCB) test shows the resistance to delamination of carbon fiber composites and this test is performed on carbon fiber composite samples incorporated with carbon nanotubes functionalized with various functional groups. The specimens with mat-like CNT layers showed the increased fracture toughness by 10.6%.

키워드

참고문헌

  1. Bekyarova, E., Thostenson, E.T., Yu, A., Kim, H., Gao, J., Tang, J., Hahn, H.T., Chou, T.W., Itkis, M.E., and Haddon, R.C., "Multiscale Carbon Nanotube-Carbon Fiber Reinforcement for Advanced Epoxy Composites," Langmuir, Vol. 23, 2007, pp. 3970-3974. https://doi.org/10.1021/la062743p
  2. Veedu, V.P., Cao, A., Li, X., Ma, K., Soldano, C., Kar, S., Ajayan, P.M., and Ghasemi-Nejhad, M.N., "Multifunctional composites using reinforced laminae with carbon-nanotube forests," Nature Materials, Vol. 5, 2006, pp. 457-462. https://doi.org/10.1038/nmat1650
  3. Garcia, E., Wardle, B., and Hart, A., "Joining prepreg composite interfaces with aligned carbon nanotubes," Composites: Part A, Vol. 39, 2008, pp. 1065-1070. https://doi.org/10.1016/j.compositesa.2008.03.011
  4. Kim, H., and Hahn, H.T., "Graphite fiber composites interlayered with single-walled carbon nanotubes," Journal of Composite Materials, Vol. 45, 2011, pp. 1109-1120. https://doi.org/10.1177/0021998311402726
  5. Kim, H., Hahn, H.T., "Graphite nanoplatelets interlayered carbon/epoxy composites," AIAA Journal, Vol. 47, No. 11, 2009, pp. 2779-2784. https://doi.org/10.2514/1.39522
  6. Lee, S., Choi, O., Lee, W., Yi, J., Kim, B., Byun, J., Yoon, M., Fong, H., Thostenson, E.T., and Chou, T., "Processing and characterization of multi-scale hybrid composites reinforced with nanoscale carbon reinforcements and carbon fibers," Composites: Part A, Vol. 42, 2011, pp. 337-344 https://doi.org/10.1016/j.compositesa.2010.10.016
  7. http://www.carbonsolution.com
  8. 김한상, "탄소나노튜브로 보강된 탄소섬유복합재의 제조 공정과 층간전단강도," 한국복합재료학회지, 제24권 제5호, 2011, pp. 34-38.
  9. ASTM Standard D5528, 2003, "Standard Test Method for Tensile Properties of Plastics," ASTM International, West Conshohocken, PA, 2003, DOI: 10.1520/D0638-03, www.astm.org.
  10. Sadeghian, R., Gangireddy, S., Minaie, B., and Hsiao, K-T., "Manufacturing carbon nanofibers toughened polyester/ glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance," Composites: Part A, Vol. 37, 2006, pp. 1787-1797. https://doi.org/10.1016/j.compositesa.2005.09.010
  11. Chandrasekaran, V., Santare, M., Krishnan, P., and Advani, S., "Amino Functionalization of MWNTs and Their Effect on ILSS of Hybrid Nanocomposites," Composite Interfaces, Vol. 18, No. 4, 2011, pp. 339-355. https://doi.org/10.1163/092764411X584478
  12. A. P. Mouritz "Ultrasonic and Interlaminar Properties of Highly Porous Composites," Journal of Composite Materials, Vol. 34, 2000, pp. 218-239. https://doi.org/10.1177/002199830003400303