Lack of Mutagenecity of Green Pigments in Salmonella typhimurium

녹변화합물의 Salmonella typhimurium에 대한 돌연변이성 측정

  • Kim, Han-Byul (Department of Food and Nutrition, Seoul National University) ;
  • Park, Han-Ul (Department of Food and Nutrition, Seoul National University) ;
  • Lee, Ju-Young (Department of Food and Nutrition, Seoul National University) ;
  • Kwon, Hoon-Jeong (Department of Food and Nutrition, Seoul National University)
  • 김한별 (서울대학교 생활과학대학 식품영양학과) ;
  • 박한울 (서울대학교 생활과학대학 식품영양학과) ;
  • 이주영 (서울대학교 생활과학대학 식품영양학과) ;
  • 권훈정 (서울대학교 생활과학대학 식품영양학과)
  • Received : 2010.12.27
  • Accepted : 2011.07.05
  • Published : 2011.09.30

Abstract

A greening phenomenon has been observed in some plant foods such as chestnut, sweet potato, burdock, and others during processing. The formation of the pigments was postulated as reactions of primary amino compounds with chi orogenic acid or caffeic acid ester, yielding acridine derivatives. Acridine derivatives have been regarded as mutagenetic agents. For the reason, the bacterial reverse mutation test was carried out to evaluate the genotoxicity of green pigment using Salmonella typhimurium TA98 and TA100. Alanine, arginine, aspartic acid, glycine, lysine, and phenylalanine were reacted repectively with chlorogenic acid to synthesize model compound. Green pigment was extracted from sweet potato. Maximum concentration of 2 and 50 mg/plate was tested for the synthetic green pigments and extracted green pigment respectively, taking bacterial survival, solubility, and color intensity into consideration. There was no signigicant increase in the reverse mutation either with or without S9 activation system by any test material. Though further studies with other genotoxicity test system are necessary, both synthetic and sweet potato green pigments seemed not to cause mutation despite the acridine moiety in their structures.

밤, 고구마, 우엉 등의 일부 식물체를 오랜 시간 보관하거나 가공하는 과정에서 표면에 녹변화합물이 형성된다. 본 연구에서는 이때 형성되는 녹변화합물이 유전독성 가능성을 내포한 novel trihydroxy acridine 유도체로서, 녹변화합물에 대한 복귀돌연변이시험을 수행하였다. 시험은 Salmonella typhimurium TA98, TA100 균주를 이용하였고 대사활성계 적용 유무에 따른 시험을 모두 수행하였다. 시험에 사용된 녹변화합물은 알라닌, 아르기닌, 아스파트산, 글라이신, 라이신, 페닐알라닌과 클로로겐산을 사용한 합성 및 고구마를 매트릭스로 하여 녹변화합물을 형성한 후 추출하는 두가지 방법을 통하여 준비하였다. 합성 녹변화합물과 추출 녹변화합물의 최대 처리 용량은 생육저해시험과 용해도, 흡광도를 고려 하여 각각 2000 ${\mu}g$/lplate, 50 ${\mu}g$plate로 결정 하였다. 녹변화합물 합성 과정 후 잔존하는 아미노산들과 클로로겐산의 영향을 배제하고자 이들을 또 다른 시험군으로 설정하고 각각 250 ${\mu}g$/plate, 1750 ${\mu}g$/plate의 농도로 처리하여 복귀돌연변이시험을 수행하였다. 시험결과 두 균주에서 농도에 의존적으로 콜로니 수가 증가하는 경향은 관찰되지 않았으며, 음성대조군 수치와 비교하여 두 배 이상의 콜로니 수도 나타나지 않았다. 이상의 결과를 종합할 때, 합성 녹변화합물과 추출 녹변화합물은 본 시험 조건에서 복귀돌연변이를 유발하지 않는 것으로 확인되었다.

Keywords

References

  1. Yabuta, G., Koizumi, Y., Namiki, K., Hida, M. and Namiki, M.: Structure of green pigment formed by the reaction of caffeic acid esters (or chlorogenic acid) with a primary amino compound. Biosci. Biotechnol. Biochem, 65(10), 2121-30 (2001). https://doi.org/10.1271/bbb.65.2121
  2. Matsui, T.: Greening pigments produced reaction of ethyl caffeate with methylamine. J. Nutr. Sci. Vitaminol (Tokyo), 27(6), 573-82 (1991).
  3. Adams, J.B.: Green Color Development in Potato Cooking Water. Food. Chem, 49(3), 295-298 (1994). https://doi.org/10.1016/0308-8146(94)90174-0
  4. Moutschen, J.: Introduction to genetic toxicology. Wiley, pp. 70-72 (1985).
  5. Ferguson, L.R. and Denny, W.A.: The genetic toxicology of acridines. Mutat. Res, 258(2), 123-60 (1991). https://doi.org/10.1016/0165-1110(91)90006-H
  6. 국립독성연구소 식품의약품 안전청.: KFDA 표준작업지침서(II), 박테리아를 이용한 복귀돌연변이시험, NITR/SOP/GNT, pp. 17-31 (1999).
  7. Organization for Economic Co-operation and Development (OECD), OECD Guidelines for the Testing of Chemicals, Bacterial Reverse Mutation Test (TG 471) (1997).
  8. Orgel, A. and Brenner, S.: Mutagenesis of Bacteriophage T4 by Acridines. J. Mol. Biol, 3(6), 762-768 (1961). https://doi.org/10.1016/S0022-2836(61)80081-8
  9. Mccoy, E.C., Rosenkranz, E.J., Petrullo, L.A. and Rosenkranz, H.S.: Frameshift Mutations - Relative Roles of Simple Intercalation and of Adduct Formation. Mutat. Res, 90(1), 21-30 (1981). https://doi.org/10.1016/0165-1218(81)90047-1
  10. Pons, F.W. and Muller, P.: On the Glucose Effect in Acridine- Induced Frameshift Mutagenesis in Escherichia-Coli. Mutat. Res, 210(1), 71-77 (1989). https://doi.org/10.1016/0027-5107(89)90046-8
  11. Nishi, Y., Hasegawa, M.M., Taketomi, M., Ohkawa, Y. and Inui, N.: Comparison of 6-Thioguanine-Resistant Mutation and Sister Chromatid Exchanges in Chinese-Hamster V79 Cells with 40 Chemical and Physical Agents. Cancer. Res, 44(8), 3270-3279 (1984).
  12. Rogers, A.M. and Back, K.C.: Comparative Mutagenicity of 4 DNA-Intercalating Agents in L5178y Mouse Lymphoma-Cells. Mutat. Res, 102(4), 447-455 (1982). https://doi.org/10.1016/0165-1218(82)90107-0
  13. Wilson, W.R., Harris, N.M. and Ferguson, L.R.: Comparison of the Mutagenic and Clastogenic Activity of Amsacrine and Other DNA-Intercalating Drugs in Cultured V79 Chinese- Hamster Cells. Cancer. Res, 44(10), 4420-4431 (1984).
  14. Terzaghi, E. et al.: Change of a Sequence of Amino Acids in Phage T4 Lysozyme by Acridine-Induced Mutations. Proc. Natl. Acad. Sci, 56(2), 500-507 (1966). https://doi.org/10.1073/pnas.56.2.500
  15. Skopek, T.R. and Hutchinson, F.: Frameshift Mutagenesis of Lambda Prophage by 9-Aminoacridine, Proflavin and Icr-191. Mol. Gen. Genet, 195(3), 418-423 (1984). https://doi.org/10.1007/BF00341442
  16. Fahrig, R.: Acridine-Induced Mitotic Gene Conversion (Paramutation) in Saccharomyces - Cerevisiae - Effect of 2 Different Modes of Binding to DNA. Mutat. Res, 10(5), 509-514 (1970). https://doi.org/10.1016/0027-5107(70)90012-6
  17. Deluca, J.G., Krolewski, J., Skopek, T.R., Kaden, D.A. and Thilly, W.G.: 9-Aminoacridine - Frameshift Mutagen for Salmonella- Typhimurium Ta-1537 Inactive at Bgprt Locus in Human Lymphoblasts. Mutat. Res, 42(2), 327-330 (1977).
  18. Bonin, A.M. et al.: The Mutagenicity of Dibenz[a,J]Acridine, Some Metabolites and Other Derivatives in Bacteria and Mammalian- Cells. Carcinogenesis, 10(6), 1079-1084 (1989). https://doi.org/10.1093/carcin/10.6.1079