DOI QR코드

DOI QR Code

Temperature-dependent Development Model of the Striped Fruit Fly, Bactrocera scutellata (Hendel)(Diptera: Tephritidae)

호박꽃과실파리 온도 발육모형

  • Jeon, Sung-Wook (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Cho, Myoung-Rae (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Yang-Pyo (Crop Protection Division, Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Lee, Sang-Guei (Crop Protection Division, Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Kim, So-Hyung (College of Agriculture and Life Sciences, Chonbuk National University) ;
  • Yu, Jin (College of Agriculture and Life Sciences, Chonbuk National University) ;
  • Lee, Jong-Jin (College of Agriculture and Life Sciences, Chonbuk National University) ;
  • Hwang, Chang-Yeon (College of Agriculture and Life Sciences, Chonbuk National University)
  • Received : 2011.10.06
  • Accepted : 2011.12.03
  • Published : 2011.12.30

Abstract

The striped fruit fly, Bactrocera scutellata, damages pumpkin and other cucurbitaceous plants. The developmental period of each stage was measured at seven constant temperatures (15, 18, 21, 24, 27, 30, and $33{\pm}1.0^{\circ}C$). The developmental time of eggs ranged from 4.2 days at $15^{\circ}C$ to 0.9 days at $33^{\circ}C$. The developmental period of larvae was 4.2 days at $15^{\circ}C$, and slowed in temperatures above $27^{\circ}C$. The developmental period of pupa was 21.5 days at $15^{\circ}C$ and 7.6 days at $33^{\circ}C$. The mortality of eggs was 17.1% at $15^{\circ}C$ and 22.9% at $33^{\circ}C$, Larval mortalities (1st, 2nd, 3rd) were 24.1, 27.3 and 18.2%, respectively, at $15^{\circ}C$, Pupal mortalities were 18.2% at $15^{\circ}C$ and 23.1% at $33^{\circ}C$. The relationship between developmental rate and temperature fit both a linear model and a nonlinear model. The lower threshold temperatures of eggs, larvae, and pupae were 12.5, 10.7, and $6.3^{\circ}C$, respectively, and threshold temperature of the total immature period was $8.5^{\circ}C$. The thermal constants required to complete the egg, larval, and pupal stages were 33.2, 118.3, and 181.2 DD, respectively. The distribution of each development stages was described by a 3-parameter Weibull function.

호박의 주요 해충인 호박꽃과실파리[Bactrocera scutellatus (Hendel)]를 항온항습기($24{\pm}1.0^{\circ}C$, $70{\pm}5%$ RH, 14L: 10D) 7개 온도(15, 18, 21, 24, 27, 30, $33{\pm}1.0^{\circ}C$, RH $70{\pm}5%$, 14L:10D)에서 온도발육실험을 수행하였다. 알의 온도별 발육기간은 $15^{\circ}C$에서 4.2일로 가장 길었고 $33^{\circ}C$에서 0.9일이 걸려 온도가 증가할수록 발육기간은 짧아지는 경향을 보였다. 유충은 2령을 제외한 1, 3령에서 온도가 증가 할수록 발육기간이 짧아지다가 $27^{\circ}C$ 이상에서는 발육 속도가 둔화하였다. 번데기 기간은 $15^{\circ}C$에서 21.5일로 가장 길었고 $33^{\circ}C$에서 7.6일로 온도가 증가할수록 짧아졌다. 알의 사망율은 $33^{\circ}C$에서 22.9%로 가장 높았으며, 유충의 사망율은 $15^{\circ}C$에서 1, 2, 3령 각각 24.1, 27.3, 18.2% $33^{\circ}C$에서는 14.8, 17.4, 31.6%를 보여 고온과 저온에서 가장 높았다. 번데기 발육기가간증의 사망율은 $15^{\circ}C$에서 18.2, $33^{\circ}C$에서 23.1%였다. 알, 유충, 번데기 기간의 발육영점온도는 12.5, 10.7, $6.3^{\circ}C$였고, 발육기간 동안의 발육영점온도는 $8.5^{\circ}C$였으며 알 유충, 번데기의 발육단계별 유효적산온도는 33.2, 118.3, 181.2일도였다. 각각의 온도에서 개체들의 발육기간을 평균 발육기간으로 나눈 값들을 3-parameter의 Weibull 함수에 적용한 결과 r2 값이 0.78-0.86 이었다.

Keywords

References

  1. Campbell, A., B.D. Frazer, N. Gilbert, A.P. Gutierrez and M. Markauer. 1974. Temperature requirements of some aphids and their parasites. J. Appl. Econ. 11: 431-438. https://doi.org/10.1002/(SICI)1099-1255(199607)11:4<431::AID-JAE396>3.0.CO;2-X
  2. Curry, G.L., R.M. Feldman and K.C. Smith. 1978. A stochasitc model of a temperature-dependent population. J. Theor. Pop. Biol. 13: 197-213. https://doi.org/10.1016/0040-5809(78)90042-4
  3. Foote, R.H., F.L. Blanc and A.L. Norrbom. 1993. Handbook of the fruit flies (Diptera: Tephritidae) of America North of Mexico. Ithaca, NY/London: Comstock. 571 pp.
  4. Han, H.Y. and Y.J. Kwon. 2000. Economic Insects of Korea 3. Diptera(Tephritidae) 113 pp.
  5. Han, M.J., S.H. Lee, S.B. Ahn, J.Y. Choi and K.M. Choi. 1994. Distribution, damage and host plants of pumpkin fruit fly, Paradacus depressua (Shiraki) RDA. J. Agri. Sci. 36: 346-350.
  6. Jeon, S.W. 2008. Biological characteristics of Bactrocera (Paradacus) depressa (Shiraki). 39pp. M. S. Thesis, Chonbuk National Univ.
  7. Jung, H.K. 1994. Check list of insects from Korea. Konkuk Univ. press. 744 pp.
  8. Kim, J.I. and K.S. Chang. 1982. On the summer seasonal insects from the group of Soan island, Wando-kun. Report on the survey of natural environment in Korea, 2: 161-184. Kor. Cen. Coun. Nat. Preserv.
  9. Kim, T.H., J.S. Kim and J.H. Mun. 1999. Distribution and bionomics of Bactrocera(Paradacus) depressa (Shiraki) in Chonbuk Province. Kor. J. Soil Zool. 4: 26-32.
  10. Kim, Y.P., S.W. Jeon, S.G. Lee, N.J. Choi and C.H. Hwang. 2010. Seasonal occurrence and damage of Bactroera scutellata (Diptera: Tephritidae) in Jeonbuk province. Kor. J. Appl. Entomol. 49: 299-304. https://doi.org/10.5656/KSAE.2010.49.4.299
  11. Lactin, D.J., N.J. Holliday, D.L. Johnson and R. Craigen. 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24: 68-75. https://doi.org/10.1093/ee/24.1.68
  12. Logan, J.A., D.J. Wollkind, S.C. Hoyt and L.K. Tanigoshi. 1976. An analytic model for description of temperature dependent rate phenomena in arthropods authors. Environ. Entomol. 5: 1133-1140. https://doi.org/10.1093/ee/5.6.1133
  13. Miyatake, T., H. Kuba and J. Yukawa. 2000. Seasonal occurrence of Bactrocera scutellata(Diptera:Tephritidae), a cecidophage of stem galls produced by Lasioptera sp.(Diptera: Cecidomyiidae) on wild gourds (Cucurbitaceae). Ann. Entomol. Soc. Am. 93: 1274-1279. https://doi.org/10.1603/0013-8746(2000)093[1274:SOOBSD]2.0.CO
  14. Ohno, S., D. Haraguchi and T. Kohama. 2006. New host and distribution records of the fruit fly, Bactrocera scutellata (Hendel) (Diptera: Tephritidae), in southwestern Japan, and a case of infestation of the species on cucumber fruits at Okinawa island. Jpn. J. Entomol. 9: 7-9.
  15. Thierry, B. and S. Quilici. 2000. Relationships between temperature, development and survival of different life stages of the tomato fruit fly, Neoceratitis cyanescens. Entomologia Entomol. Exp. Appl. 94: 25-30. https://doi.org/10.1046/j.1570-7458.2000.00600.x
  16. SAS Institute. 1999. SAS version 9.1, SAS, Institute Cary, N.C.
  17. Shiraki, T. 1968. Fruit flies of the Ryukyu islands. United States national museum bulletin 263 pp.
  18. Sugimoto, S., M. Kanda, K. Tanaka and M. Tao. 1988. Some biological note on Dacus scutellatus(HENDEL). Res. Buill. Pl. Prot. Japan 24: 49-51.
  19. Tanaka, K. 1936. On Zeugodacus bezzii Miyake. Nojikairyo-shiryo 106: 42-46.
  20. Wagner. T.L., P.J. Wu, H. Sharpe, R. M. Schoolfield and R.N. Coulson. 1984. Modeling distribution of insect development rate: a literature review an application of a biophysical model. Ann. Entomol. Soc. Am. 77: 208-225. https://doi.org/10.1093/aesa/77.2.208
  21. White, I.M. and M.M. Elson-Harris. 1992. Fruit flies of economic significance: Their identification and bionomics. ed. 252 pp. CAB International, UK.
  22. Yang, P. 1988. Status of fruit fly research in China. Research institute of Entomology Zhongshan(Sun Yatsen) Univ. 29p.

Cited by

  1. Temperature-dependent Development Model of Larvae of Mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae) vol.52, pp.4, 2013, https://doi.org/10.5656/KSAE.2013.11.0.066
  2. Complete mitochondrial genome of stripped fruit fly, Bactrocera (Zeugodacus) scutellata (Diptera: Tephritidae) from Anshun, Southwest China vol.2, pp.2, 2017, https://doi.org/10.1080/23802359.2017.1347899
  3. Integrated Pest Management Against Bactrocera Fruit Flies 2016, https://doi.org/10.5656/KSAE.2016.10.0.026