DOI QR코드

DOI QR Code

Temperature-dependent Development Model and Forecasting of Adult Emergence of Overwintered Small Brown Planthopper, Laodelphax striatellus Fallen, Population

애멸구 온도 발육 모델과 월동 개체군의 성충 발생 예측

  • Park, Chang-Gyu (Crop Protection Division, Department of Agricultural Biology, National Academy of Agricultural Science) ;
  • Park, Hong-Hyun (Crop Protection Division, Department of Agricultural Biology, National Academy of Agricultural Science) ;
  • Kim, Kwang-Ho (Crop Protection Division, Department of Agricultural Biology, National Academy of Agricultural Science)
  • 박창규 (국립농업과학원 농업생물부 작물보호과) ;
  • 박홍현 (국립농업과학원 농업생물부 작물보호과) ;
  • 김광호 (국립농업과학원 농업생물부 작물보호과)
  • Received : 2011.10.07
  • Accepted : 2011.12.12
  • Published : 2011.12.30

Abstract

The developmental period of Laodelphax striatellus Fallen, a vector of rice stripe virus (RSV), was investigated at ten constant temperatures from 12.5 to $35{\pm}1^{\circ}C$ at 30 to 40% RH, and a photoperiod of 14:10 (L:D) h. Eggs developed successfully at each temperature tested and their developmental time decreased as temperature increased. Egg development was fasted at $35^{\circ}C$(5.8 days), and slowest at $12.5^{\circ}C$ (44.5 days). Nymphs could not develop to the adult stage at 32.5 or $35^{\circ}C$. The mean total developmental time of nymphal stages at 12.5, 15, 17.5, 20, 22.5, 25, 27.5 and $30^{\circ}C$ were 132.7, 55.9, 37.7, 26.9, 20.2, 15.8, 14.9 and 17.4 days, respectively. One linear model and four nonlinear models (Briere 1, Lactin 2, Logan 6 and Poikilotherm rate) were used to determine the response of developmental rate to temperature. The lower threshold temperatures of egg and total nymphal stage of L. striatellus were $10.2^{\circ}C$ and $10.7^{\circ}C$, respectively. The thermal constants (degree-days) for eggs and nymphs were 122.0 and 238.1DD, respectively. Among the four nonlinear models, the Poikilotherm rate model had the best fit for all developmental stages ($r^2$=0.98~0.99). The distribution of completion of each development stage was well described by the two-parameter Weibull function ($r^2$=0.84~0.94). The emergence rate of L. striatellus adults using DYMEX$^{(R)}$ was predicted under the assumption that the physiological age of over-wintered nymphs was 0.2 and that the Poikilotherm rate model was applied to describe temperature-dependent development. The result presented higher predictability than other conditions.

줄무늬잎마름병을 매개하는 애멸구, Laodelphax striatellus Fallen의 온도에 따른 알 및 약충 발육 기간을 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, $35{\pm}1^{\circ}C$의 10개 항온, 14:10 (L:D) h 광, 상대습도 30~40% 조건에서 조사하였다. 알은 모든 온도 조건에서 1령으로 성공적으로 발육하였으며, 발육기간은 $12.5^{\circ}C$에서 44.5일로 가장 길었고 온도가 증가함에 따라 짧아져 $35^{\circ}C$에서 5.8일로 가장 짧았다. 약충은 12.5, 15, 17.5, 20, 22.5, 25, 27.5, $30^{\circ}C$에서 성충까지 발육 가능하였으며, 각 온도에서 약충 전체 발육기간은 132.7, 55.9, 37.7, 26.9, 20.2, 15.8, 14.9, 17.4일이 소요되었다. 온도와 발육율과의 관계를 설명하기 위해 선형 및 4개의 비선형 (Briere 1, Lactin 2, Logan 6, Poikilotherm rate) 모델을 사용하여 분석하였다. 선형 모델을 이용하여 추정한 알과 약충 전체기간 발육을 위한 발육영점온도는 각각 $10.2^{\circ}C$$10.7^{\circ}C$였으며 발육에 필요한 유효적산온도는 각각 122.0, 238.1DD였다. 4가지 비선형 모델 중 Poikilotherm rate 모델이 모든 발육단계에서 온도와 발육율과의 관계를 가장 잘 설명하였다 ($r^2$=0.98~0.99). 알 및 유충의 발육단계별 발육완료 분포는 two-parameter Weibull 함수를 사용하였으며 모든 발육단계에서 비교적 높은 상관관계 ($r^2$=0.84~0.94) 값을 보여 양호한 모형 적합성을 보였다. DYMEX$^{(R)}$(version 3.0)를 이용하여 2개 지역에서 애멸구 월동 개체군의 발육을 추정한 결과 월동 후 개체군의 생리적 연령을 0.2로 가정하고 온도발육 모델로 Poikilotherm rate 모델을 사용하였을 경우 높은 우화시기 예측력을 볼 수 있었다.

Keywords

References

  1. Bae, S.D., Y.H. Song and K.B. Park. 1995. Study on the bionomics of overwintering small brown planthopper, Laodelphax striatellus Fallen, in Milyang. Korean J. Appl. Entomol. 34: 321-327.
  2. Briere, J.F., P. Pracros, A.Y. Le Roux and J.S. Pierre. 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28: 22-29. https://doi.org/10.1093/ee/28.1.22
  3. Campbell, A., B.D. Frazer, N. Gilbert, A.P. Gutierrez and M. Markauer. 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11: 431-438. https://doi.org/10.2307/2402197
  4. Choi, S.Y., Y.H. Song, J.S. Park and K.Y. Choi. 1974. Studies on the varietal resistance of rice to the smaller brown planthopper, Laodelphax striatellus Fallen (IV). Korean J. Pl. Prot. 13: 11-16.
  5. Chon, T.S., J.S. Hyun and C.S. Park. 1975. A study on the population dynamics of overwintered small brown planthopper, Laodelphax striatellus (Fallen). The Korean J. Entomology. 5: 21-32.
  6. Chung, B.J. 1974. Studies on the occurrence, host range, transmission, and control of rice stripe disease in Korea. Kor. J. Pl. Prot. 181-204.
  7. Curry, G.L., R.M. Feldman and K.C. Smith. 1978a. A stochastic model of a temperature-dependent population. Theor. Popul. Biol. 13: 197-213. https://doi.org/10.1016/0040-5809(78)90042-4
  8. Curry, G.L., R.M. Feldman and P.J.H. Sharpe. 1978b. Foundations of stochastic development. J. Theor. Biol. 74: 397-410. https://doi.org/10.1016/0022-5193(78)90222-9
  9. Hachiya, K. 1990. Effect of temperature on the developmental velocity of the small brown planthopper, Laodelphax striatellus Fallen. Annu. Rep. Soc. Pl. Prot. North Japan 41: 112-113.
  10. Hirano, I. 1942. Pest of rice. Meg. Pest 29: 37-38.
  11. Hyun, J.S., K.S. Woo and M.I. Ryoo. 1977. Studies on the seasonal increase of the population of the smaller brown planthopper, Laodelphax striatellus (Fallen). Korean J. Pl. Prot. 16: 13-19.
  12. KMA. 2011. Korea Meteorological administratjon, http://kma.go.kr/ weather/observation/past_table.jsp.
  13. Kishimoto, R. 1958. Studies on the diapause in the planthoppers. 1. Effect of photoperiod on the induction and the completion of diapause in the 4th of larval stage of the small brown plant hopper-Delphacodes striatella. Jap. J. Appl. Entomol. Zool. 2: 120-134.
  14. Lactin, D.J., N.J. Holliday, D.I. Johnson and R. Craigen. 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24: 68-75. https://doi.org/10.1093/ee/24.1.68
  15. Logan, J.A., D.J. Wollkind, S.C. Hoyt and L.K. Tanigoshi. 1976. An analytical model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5: 1133-1140. https://doi.org/10.1093/ee/5.6.1133
  16. Maywald, G.F., D.J. Kriticos, R.W. Sutherst and W. Bottomley. 2007a. DYMEX Model builder, version3 user's guide. Hearne Scientific Software Pty Ltd, Melbourne 3000, Australia.
  17. Maywald, G.F., W. Bottomley and R. W. Sutherst. 2007b. DYMEX Model simulator, version3 user's guide. Hearne Scientific Software Pty Ltd, Melbourne 3000, Australia.
  18. Park, J.W., T.S. Jin, H.S. Choi, S.H. Lee, D.B. Shin, I.S. Oh, S.G. Lee, M.H. Lee, B.R. Choi, S.D. Bae, J.Y. Kim, K.S. Han, T.H. Noh, S.J. Ko, J.D. park, B.C. Lee, T.S. Kim, B.K. Chung, S.J. Hong, C.H. Kim, H.M. Park and K.W. Lee. 2009. Incidence of rice stripe virus during 2002 to 2004 in Korea and chemical control of small brown planthopper. Korean J. Pestic. Sci. 13: 309-314.
  19. SAS Institute. 2008. SAS OnlineDoc, Version 9.1.3. SAS Institute. Cary, NC. USA.
  20. Schoolfield, R.M., P.J.H. Sharpe and C.E. Mugnuson. 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88: 719-731. https://doi.org/10.1016/0022-5193(81)90246-0
  21. Sharpe, P.J.H. and D.W. DeMichele. 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64: 649-670. https://doi.org/10.1016/0022-5193(77)90265-X
  22. Sharpe, P.J.H., G.L. Curry, D.W. DeMichele and C.L. Cole. 1977. Distribution model of organisms development times. J. Theor. Biol. 66: 21-38. https://doi.org/10.1016/0022-5193(77)90309-5
  23. Suenaga, H. 1963. Studies on the formulas for forecasting the occurrence of important insect pests in Kyushu district. III. Relation between climatic factors and the numerical population of rice planthopper and leafhoppers in the light trap catch. Proc. Assoc. Plant. Prot. Kyushu 32: 32-84.
  24. SYSTAT. 2002. TableCurve 2D Automated curve fitting analysis: version 5.01. Systat software. Inc. San Jose, CA.
  25. Wagner, T.L., H. Wu, P.J.H. Sharpe and R.N. Coulson. 1984. Modeling distribution of insect development time: a literature review an application of Weibull function. Ann. Entomol. Soc. Am. 77: 475-487. https://doi.org/10.1093/aesa/77.5.475
  26. Yamamoto, S. and H. Suenaga. 1956. Developmental threshold temperature of rice green leafhopper and small brown planthopper. Kyushu Agric. Res. 17: 110-111.
  27. Zhang, A.M., X.D. Liu, B.P. Zhai and X.Y. Gu. 2008. Influences of temperature on biological characteristics of the small brown planthopper, Laodelphax striatellus (Fallen) (Hemiptera: Delphacidae). Acta Entomol. Sinica 51: 640-645.

Cited by

  1. Feeding Behavior of the Small Brown Planthopper, Laodelphax striatellus (Hemiptera: Delphacidae) on Rice Plants Based on EPG Waveform, Honeydew Excretion, and Microsection Analysis 2016, https://doi.org/10.5656/KSAE.2016.07.0.039
  2. Rice Stripe Virus (RSV) Acquisition and Infection Rates According to Wing Form, Sex and Life Stage of Small Brown Planthopper (Laodelphax striatellus) 2015, https://doi.org/10.5656/KSAE.2015.11.0.069