DOI QR코드

DOI QR Code

Optimization for Mycelial Growth and Inhibitory Effect on Nitric Oxide Production of Cordyceps nutans Pat.

노린재동충하초의 배양 최적화 및 NO 생성 저해 효과

  • Lee, Ki-Man (College of Pharmacy and Institute of Chronic Disease, Sahmyook University) ;
  • Lee, Geum-Seon (College of Pharmacy and Institute of Chronic Disease, Sahmyook University) ;
  • Nam, Sung-Hee (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lim, Sung-Cil (College of Pharmacy, Chungbuk National University) ;
  • Kang, Tae-Jin (College of Pharmacy and Institute of Chronic Disease, Sahmyook Univer)
  • 이기만 (삼육대학교 약학대학 및 만성병연구소) ;
  • 이금선 (삼육대학교 약학대학 및 만성병연구소) ;
  • 남성희 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 임성실 (충북대학교 약학대학) ;
  • 강태진 (삼육대학교 약학대학 및 만성병연구소)
  • Received : 2011.09.23
  • Accepted : 2011.10.14
  • Published : 2011.12.30

Abstract

Cordyceps (vegetable wasp and plant worm), an entomopathogenic fungi, has been used as a herbal medicine in Asian countries since ancient times. Cordyceps nutans is common but there is little research on this species. This study investigated the optimal culture conditions of C. nutans and the inhibitory effect on nitric oxide (NO) production in RAW 264.7 cell treated culture broth. The optimal conditions for the mycelial growth were $25^{\circ}C$ and pH 7.0-8.0. Mycelial growth was highest on mushroom complete medium (MCM), V8 juice agar (V8A), and yeast malt dextrose (YMD) medium. Mycelial growth on mushroom minimal medium (MMM) did not occur, so nutrient source was essential. Dextrose and sucrose as carbon sources, and ammonium citrate as a nitrogen source were satisfactory for mycelial growth. Cytotoxicity of C. nutans culture broth was not found in RAW 264.7 cells. C. nutans culture broth suppressed NO production of lipopolysaccharide (LPS)-stimulated RAW 264.7 cell in a dose-dependent manner. Thus, our results provided the optimal conditions for cultivation of C. nutans and showed that C. nutans may have excellent physiological activities.

동충하초는 예로부터 아시아권에서 한방약재로 사용되어 온 곤충병원성진균이다. 이 중 노린재동충하초(Cordyceps nutans)는 자연 상태에서 비교적 많이 발견되나 이에 대한 연구가 미미한 편이다. 따라서 본 실험에서는 C. nutans 균사체의 최적 배양 조건을 확립하고 배양액 처치 시대식세포의 NO (nitric oxide) 생성 억제 효능을 조사하였다. 균사 생육 적정 온도는 $25^{\circ}C$이었으며 pH는 7.0~8.0 사이의 중성범위로 조사되었다. MCM (mushroom complete medium), V8A (V8 juice agar), YMD (yeast malt dextrose) 배지에서는 균사 생육이 우수하였으나 MMM (mushroom minimal medium) 배지의 경우 균사 생육이 이루어지지 않아 영양원이 필수적이었다. 영양원 선발에 있어 탄소원은 dextrose와 sucrose가 적합하였고 질소원은 ammonium citrate가 균사 생장에 적합하였다. RAW 264.7 세포에 대한 C. nutans 배양액의 세포 독성은 나타나지 않았으며 LPS (lipopolysaccharide)를 처리 한 세포의 NO 생성량은 농도 의존적으로 줄어들었다. 따라서 본 실험 결과는 C. nutans 배양 시 다량의 균사체를 확보할 수 있는 최적 조건을 제공할 뿐 아니라 C. nutans의 항염 관련 우수한 생리 활성이 있음을 보여준다.

Keywords

References

  1. Chang, L.P., Y.S. Lai, C.J. Wu and T.C. Chou. 2009. Liquid perfluorochemical inhibits inducible nitric oxide synthase expression and nitric oxide formation in lipopolysaccharide-treated RAW 264.7 macrophages. J. Pharmacol. Sci. 111: 147-154. https://doi.org/10.1254/jphs.09043FP
  2. Heo, J.C., S.H. Nam, S.W. Kang, I.P. Hong, K.K. Lee, J.Y. Park, K.H. Kim, S.Y. Han and S.H. Lee. 2007. Comparison of antioxidant, anticancer and immunomodulating activities of extracts from DongChungXiaCao. Kor. J. Food Preserv. 14: 681-687.
  3. Hubbel, H.R., E.C. Pequignot, D.H. Willis, C. Lee and R.J. Suhadolnik. 1985. Differential antiproliferative actions of 2', 5' oligo a trimer core and its cordycepin analogue on human tumor cells. Int. J. Cancer. 36: 389-394.
  4. Hwang, P.A., S.Y. Chien, Y.L. Chan, M.K. Lu, C.H. Wu, Z.L. Kong and C.J. Wu. 2011. Inhibition of lipopolysaccharide (LPS)-induced inflammatory responses by Sargassum hemiphyllum sulfated polysaccharide extract in RAW 264.7 macrophage cells. J. Agric. Food Chem. 59: 2062-2068. https://doi.org/10.1021/jf1043647
  5. Hywel-Jones, N. 1995. Notes on Cordyceps nutans and its anamorph, a pathogen of hemipteran bugs in Thailand. Mycol. Res. 99: 724-726. https://doi.org/10.1016/S0953-7562(09)80536-4
  6. Ito, Y. and T. Hirano. 1997. The determination of the partial 18S ribosomal DNA sequences of Cordyceps species. Lett. Appl. Microbiol. 25: 239-242. https://doi.org/10.1046/j.1472-765X.1997.00203.x
  7. Jianzhe, Y., M. Xiaoloan, M. Qiming, Z. Yichen and W. Huaan. 1989. Icons of medicinal fungi from China. Science Press. China.
  8. Ju, X, Y. Sun, X. Cao, J. Jiang, T. Zhang and Y. Ito. 2009. Two-step purification of cordycepin from Cordyceps millitaris by high-speed countercurrent chromatography. J. Liq. Chromatogr. Relat. Technol. 32: 2417-2423. https://doi.org/10.1080/10826070903188153
  9. Kindt, T.J., R.A. Goldsby and B.A. Osborne. 2007. Kuby immunology. 6th ed., 14 pp. W.H. Freeman. United States.
  10. Kneifel, H., W.A. Konig, W. Loeffler and R. Muller. 1977. Ophiocordin, an antifungal antibiotics of Cordyceps ophioglossoides. Arch. Microbiol. 113: 121-130. https://doi.org/10.1007/BF00428591
  11. Kobayasi, Y. 1982. Keys to the taxa of the genera Cordyceps and Torrubiella. Trans. Myco. Soc. Jpn. 23: 329-364.
  12. Kobayasi, Y. and D. Shimizu. 1983. Iconography of vegetable wasps and plant worms. Hoikusha Publishing Company Ltd. Osaka. Japan.
  13. Kumar, V., A.K. Abbas, N. Fausto and R.N. Michell. 2007. Robbins basic pathology. 8th ed. Elsevier Inc. England.
  14. Lee, J.K., Y.S. Choi and J.M. Sung. 2000. Investigation on cultural characteristics of mycelial growth by Cordyceps scarabaeicola. Kor. J. Mycol. 28: 81-87.
  15. Lee, K.M., I.P. Hong, S.H. Nam, G.B. Sung and Y.H. Bae. 2008. The cultural characteristics and antibacterial activities of Cordyceps militaris and Paecilomyces tenuipes. Kor. J. Appl. Entomol. 47: 479-486. https://doi.org/10.5656/KSAE.2008.47.4.479
  16. Nam, S.H., I.Y. Jung, S.D. Ji and S.Y. Cho. 2001. The medium development for entomopathogenic fungi by using silkworm powder. Kor. J. Seric. Sci. 43: 83-87.
  17. Park, B.T., K.H. Na, E.C. Jung, J.W. Park and H.H. Kim. 2009. Antifungal and anticancer activities of a protein from the mushroom Cordyceps militaris. Kor. J. Physiol. Pharmacol. 13: 49-54. https://doi.org/10.4196/kjpp.2009.13.1.49
  18. Sae-Wong, C., H. Matsuda, S. Tewtrakul, P. Tansakul, S. Nakamura, Y. Nomura and M. Yoshikawa. 2011. Suppressive effects of methoxyflavonoids isolated from Kaempferia parviflora on inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. J. Ethnopharmacol. 136: 488-495. https://doi.org/10.1016/j.jep.2011.01.013
  19. Samson, R.A., H.C. Evans and J.P. Latge. 1988. Atlas of entomopathogenic fungi. Springer. Heidelberg.
  20. Sasaki, F., T. Miyamoto, Y. Tamai and T. Yajima. 2004. Isolation of vegetable wasps and plant worms, Cordyceps nutans, from fruit-body tissue. J. Invertebr. Pathol. 85: 70-73. https://doi.org/10.1016/j.jip.2004.02.007
  21. Shah, P.A. and J.K. Pell. 2003. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 61: 413-423. https://doi.org/10.1007/s00253-003-1240-8
  22. Shim, S.M., Y.S. Lee, S.S. Lim, K.H. Shin, J.E. Hyun, S.Y. Kim and E.B. Lee. 2000. Pharmacological activities of Paecilomyces japonica, a new type Cordyceps sp. Kor. J. Pharmacogn. 31: 163-167.
  23. Shimizu, D. 1994. Color iconography of vegetables wasps and plant worms. Seibundo Shinkosa. Japan.
  24. Shin, J.C., S. Bhushan, W.H. Lee, Y.J. Park, S.Y. Kim, G.R. Jeong, H.K. Kim, T.W. Kim and J.M. Sung. 2004. Distribution and favorable conditions for mycelial growth of Cordyceps pruinosa in Korea. Kor. J. Mycol. 32: 79-88. https://doi.org/10.4489/KJM.2004.32.2.079