DOI QR코드

DOI QR Code

Oxidation-Induced Conformational Change of a Prokaryotic Molecular Chaperone, Hsp33, Monitored by Selective Isotope Labeling

  • Lee, Yoo-Sup (Department of Biotechnology, Konkuk University) ;
  • Ryu, Kyoung-Seok (Division of Magnetic Resonance, Korea Basic Science Institute) ;
  • Lee, Yuno (Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University) ;
  • Kim, Song-Mi (Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University) ;
  • Lee, Keun-Woo (Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University) ;
  • Won, Hyung-Sik (Department of Biotechnology, Konkuk University)
  • Received : 2011.11.18
  • Accepted : 2011.12.13
  • Published : 2011.12.20

Abstract

Hsp33, a prokaryotic molecular chaperone, exerts holdase activity in response to oxidative stress. In this study, the stepwise conformational change of Hsp33 upon oxidation was monitored by NMR. In order to overcome its high molecular weight (33 kDa as a monomer and 66 kDa as a dimer), spectra were simplified using a selectively [$^{15}N$]His-labeled protein. All of the eight histidines were observed in the TROSY spectrum of the reduced Hsp33. Among them, three peaks showed dramatic resonance shifts dependent on the stepwise oxidation, indicating a remarkable conformational change. The results suggest that unfolding of the linker domain is associated with dimerization, but not entire region of the linker domain is unfolded.

Keywords

References

  1. U. Jakob, W. Muse, M. Eser, J.C.A. Bardwell, Cell. 96, 341, (1999). https://doi.org/10.1016/S0092-8674(00)80547-4
  2. P.C.F. Graf, U. Jakob, Cell. Mol. Life Sci. 59, 1624, (2002). https://doi.org/10.1007/PL00012489
  3. M.W. Akhtar, V. Srinivas, B. Raman, T. Ramakrishna, T. Inobe, K. Maki, M. Arai, K. Kuwajima, C.M. Rao, J. Biol. Chem. 279, 55760, (2004). https://doi.org/10.1074/jbc.M406333200
  4. M. Ilbert, J. Horst, S. Ahrens, J. Winter, P.C.F. Graf, H. Lilie, U. Jakob, Nat. Struct. Mol. Biol. 14, 556, (2007). https://doi.org/10.1038/nsmb1244
  5. J. Graumann, H. Lilie, X. Tang, K.A. Tucker, J.H. Hoffmann, J. Vijayalakshmi, M. Saper, C.A. Bardwell, U. Jakob, Structure 9, 377, (2001). https://doi.org/10.1016/S0969-2126(01)00599-8
  6. P.C.F. Graf, M. Martinez-Yamout, S. VanHaerents, H. Lilie, H.J. Dyson, U. Jakob, J. Bio. Chem. 279, 20529, (2004). https://doi.org/10.1074/jbc.M401764200
  7. I. Janda, Y. Devedjiev, U. Derewenda, Z. Dauter, J. Bielnicki, D.R. Cooper, P.C.F. Graf, A. Joachimiak, U. Jakob, Z.S. Derewenda, Structure 12, 1901, (2004). https://doi.org/10.1016/j.str.2004.08.003
  8. J. Vijayalakshmi, M.K. Mukhergee, J. Graumann, U. Jakob, M.A. Saper, Structure 9, 367, (2001). https://doi.org/10.1016/S0969-2126(01)00597-4
  9. S.-J. Kim, D.-G. Jeong, S.-W. Chi, J.-S. Lee, S.-E. Ryu, Nat. Struct. Biol. 8, 459, (2001). https://doi.org/10.1038/87639
  10. L. Jaroszewski, R. Schwarzenbacher, D. McMullan, P. Abdubek, S. Agarwalla, E. Ambing, H. Axelrod, T. Biorac, J.M. Canaves, H.-J. Chiu, et al., Proteins 61, 669, (2005). https://doi.org/10.1002/prot.20542
  11. S-W. Chi, D.G. Jeong, J.R. Woo, H.S. Lee, B.C. Park, B.Y. Kim, R.L. Erikson, S.E. Ryu, S.J. Kim, FEBS Lett. 585, 664, (2011). https://doi.org/10.1016/j.febslet.2011.01.029
  12. Y.-S. Lee, H.-S. Ko, K.-S. Ryu, Y.-H. Jeon, H.-S. Won, J. Kor. Magn. Reson. Soc. 14, 117, (2010). https://doi.org/10.6564/JKMRS.2010.14.2.117
  13. M. Ilbert, P.C.F. Graf, U. Jakob, Antioxid. Redox Signal 8, 835, (2006). https://doi.org/10.1089/ars.2006.8.835
  14. D.-W. Sim, H.-C. Ahn, H.-S. Won, J. Kor. Magn. Reson. Soc. 13, 108, (2009). https://doi.org/10.6564/JKMRS.2009.13.2.108

Cited by

  1. Intrinsically disordered fold of a PIAS1-binding domain of CP2b vol.18, pp.1, 2014, https://doi.org/10.6564/JKMRS.2014.18.1.030
  2. Structural Characterization of the J-domain of Tid1, a Mitochondrial Hsp40/DnaJ Protein vol.16, pp.1, 2012, https://doi.org/10.6564/JKMRS.2012.16.1.022
  3. Backbone NMR Assignments of an Uncharacterized Protein, SF1002 from Shigella flexneri 5a M90T vol.19, pp.1, 2015, https://doi.org/10.6564/JKMRS.2015.19.1.036
  4. Oxidation-induced conformational change of Hsp33, monitored by NMR vol.19, pp.3, 2015, https://doi.org/10.6564/JKMRS.2015.19.3.099
  5. Backbone NMR Assignments of a Prokaryotic Molecular Chaperone, Hsp33 from Escherichia coli vol.16, pp.2, 2012, https://doi.org/10.6564/JKMRS.2012.16.2.172