DOI QR코드

DOI QR Code

Purification and Structural Analysis of Surfactin Produced by Endophytic Bacillus subtilis EBS05 and its Antagonistic Activity Against Rhizoctonia cerealis

  • Wen, Cai-Yi (Post-doctoral Work Station, Fujian Agriculture and Forestry University) ;
  • Yin, Zhi-Gang (College of Plant Protection, Henan Agricultural University) ;
  • Wang, Kai-Xuan (College of Plant Protection, Henan Agricultural University) ;
  • Chen, Jian-Guang (College of Plant Protection, Henan Agricultural University) ;
  • Shen, Shun-Shan (College of Plant Protection, Henan Agricultural University)
  • Received : 2011.03.09
  • Accepted : 2011.08.19
  • Published : 2011.12.01

Abstract

Bacillus subtilis EBS05, an endophytic bacteria strain isolated from a medicinal plant Cinnamomum camphor, can produce antagonistic compounds that effectively inhibit plant pathogenic fungi. The greenhouse experiments showed that wheat sharp eyespot disease (WSED) was reduced by 91.2%, 88.2% and 43.0% after the treatment with fermentation broth, bacteria-free filter and a fungicide fludioxonil, respectively. The culture broth of strain EBS05 can more effectively control WSED than can fludioxonil. The fermentation broth and bacteria-free filter ability to suppress WSED was not significantly different, suggesting that an active secreted substance played a major role in controlling WSED. Separation and purification of the active compounds was carried out by serial processes, including hydrochloric acid (pH 2.0) treatment, methanol extraction and Sephadex LH-20 column chromatography, silica gel column chromatography and reverse-phase high-pressure liquid chromatography (HPLC), respectively. The purified compounds, one of active peaks in the HPLC spectrum, were obtained from the collection. Analysis of the chemical structures by time-of-flight mass spectrometry (TOF-MS) and electrospray ionization mass spectrometry/mass spectrometry (ESI-MS/MS) showed that the active substances produced by the endophytic bacteria EBS05 are mixture of the ${\beta}$-hydroxy-C12~C15-$Leu^7$ surfactin A isomers with 1035.65 Da, 1021.64 Da, 1007.63 Da and 993.65 Da molecular weights, respectively.

Keywords

References

  1. Asaka, O. and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62:4081-4085.
  2. Bacon, C. W. and Hinton, D. M. 1999. Use of Bacillus subtilis as an endophyte for the control of disease caused by fungi. Patent 5994117, US Patent and Trademark Office, Nov 30.
  3. Berg, G. and Hartmann, J. 2006. Control of plant pathogenic fungi with bacteria endophytes. In:Schulz B. J. E., Boyle C. J. C., Sieber T N. Microbial Root Endophytes, pp53-69. Springer-Verlag, Berlin.
  4. Bing Liu, Hongping Qiao, Lili Huang, Heinrich Buchenauer, Qingmei Han and Zhengsheng Kang. 2009. Biological control of take-all in wheat by endophytic Bacillus subtilis EIR-j and potential mode of action. Biol. Cont. 49:277-285. https://doi.org/10.1016/j.biocontrol.2009.02.007
  5. Cindy Lodewyckx, Jaco Vangronsveld, Fiona Porteous, Edward R. B. Moore, Safieh Taghavi, Max Mezgeay and Daniel van der Lelie. 2002. Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci. 21:583-606. https://doi.org/10.1080/0735-260291044377
  6. Clarkson, J. D. S. and Cook, R. J. 1983. Effects of sharp eyespot on yield loss in winter wheat. Plant Pathol. 32:421-428. https://doi.org/10.1111/j.1365-3059.1983.tb02856.x
  7. Devendra K Choudhary and Bhavdish N Johri. 2009. Interactions of Bacillus spp. and plants--with special reference to induced systemic resistance (ISR). Microbiol. Res. 164:493-513. https://doi.org/10.1016/j.micres.2008.08.007
  8. Ednar G. Wulff, Cames M. Mguni, Carmen N. Mortensen, Chandroo L. Keswani and John Hockenhull. 2002. Biological control of black rot (Xanthomonas campestris pv. campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe. Eur. J. Plant Pathol. 108:317-325. https://doi.org/10.1023/A:1015671031906
  9. Eva Wilhelm, Wolfgang Arthofer, Roland Schaeitner and Birgit Krebs. 1998. Bacillus subtilis an endophyte of chestnutt (Castaneasativa) as antagonist against chestnut blight (Cryphonectria parasitica). Plant Cell Tiss. Org. 52:105-108. https://doi.org/10.1023/A:1005917906769
  10. Gary Strobel, Bryn Daisy, Uvidelio Castillo and James Harper. 2004. Natural products from endophytic microorganisms. J. Nat. Prod. 67:257-268. https://doi.org/10.1021/np030397v
  11. Grangemard, I., Peypoux, F., Wallach, J., Das, B. C., Labbe, H., Caille, A., Genest, M., Maget-Dana, R., Ptak, M. and Bonmatin, J. M. 1997. Lipopeptides with improved properties: structure by NMR, purification by HPLC and structure-activity relationships of new isoleucyl-rich surfactins. J. Pept. Sci. 3:145-154. https://doi.org/10.1002/(SICI)1099-1387(199703)3:2<145::AID-PSC96>3.0.CO;2-Y
  12. Hallmann, J., Oualt-Hallmann, A., Mahaffee, W. F. and Kloepper, J. W. 1997. Bacteria endophytes in agricultural crops. Can. J. Microbiol. 43:895-914. https://doi.org/10.1139/m97-131
  13. Henis, Y. 1984. Interactions between Sclerotium rolfsii and Trichoderma spp. Relationship between antagonism and disease control. Soil Biol. Biochem. 16:391-395. https://doi.org/10.1016/0038-0717(84)90039-7
  14. Inbar, J. and Chet, I. 1991. Evidence that chitinase production by Aeromonas cabiae is involved in the biological control of soilborne plant pathogens by this bacterium. Soil Biol. Biochem. 23:973-978. https://doi.org/10.1016/0038-0717(91)90178-M
  15. Kim, K. M., Lee, J. Y., Kim, C. K. and Kang, J. S. 2009. Isolation and characterization of surfactin produced by Bacillus polyfermenticus KJS-2. Arch. Pharm. Res. 32:711-715. https://doi.org/10.1007/s12272-009-1509-2
  16. Krzysztofa Nagorska, Mariusz Bikwoski and Michal Obuchowski. 2007. Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim. Pol. 54:495-508.
  17. Lee, S. C., Kim, S. H., Park, I. H., Chung, S. Y. and Choi, Y. L. 2007. Isolation and structural analysis of bamylocin A, novel lipopeptide from Bacillus amyloliquefaciens LP03 having antagonistic and crude oil-emulsifying activity. Arch. Microbiol. 188:307-312. https://doi.org/10.1007/s00203-007-0250-9
  18. Ligia Rodrigues, Ibrahim M. Banat, Jose Teixeira and Rosario Oliveira. 2006. Biosurfactins: potential applications in medicine. J. Antimicrob. Chemoth. 57:609-618. https://doi.org/10.1093/jac/dkl024
  19. Lijun Sun, Zhaoxin Lu, Xiaomei Bie, Fengxia Lu and Shengyuan Yang. 2006. Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J. Microbiol. Biotechnol. 22:1259-1266. https://doi.org/10.1007/s11274-006-9170-0
  20. Lim, J. H., Park, B. K., Kim, M. S., Hwang, H. M., Rhee, M. H., Park, S. C. and Yun, H. I. 2005. The anti-thrombotic activity of surfactins. J. Vet. Sci. 6:353-355.
  21. Marc Ongena, Emmanuel Jourdan, Akram Adam, Michel Paquot, Alain Brans, Bernard Joris, Jean-Louis Arpigny and Philippe Thonart. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9:1084-1090. https://doi.org/10.1111/j.1462-2920.2006.01202.x
  22. Marc Ongena, Franceline Duby, Emmanuel Jourdan, Thierry Beaudry, Victor Jadin, Jacques Dommes and Philippe Thonart. 2005. Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl. Microbiol. Biotechnol. 67:692-698. https://doi.org/10.1007/s00253-004-1741-0
  23. Martin Kowall, Joachim Vater, Britta Kluge, Torsten Stein, Peter Franke and Dieter Ziessow. 1998. Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB105. J. Colloid Interf. Sci. 204:1-8. https://doi.org/10.1006/jcis.1998.5558
  24. Maurice E. Snook, Travor Mitchell, Dorothy M. Hinton and Charles W. Bacon. 2009. Isolation and characterization of Leu7-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. J. Agric. Food Chem. 57:4287-4292. https://doi.org/10.1021/jf900164h
  25. Misaghi, I. and Donndelinger, C. R. 1990. Endophytic bacteria in symptom-free cotton plants. Phytopathology 80:808-811. https://doi.org/10.1094/Phyto-80-808
  26. Morikawa, M., Hirata, Y. and Imanaka, T. 2000. A study on the structure-function relationship of lipopeptide biosurfactants. Biochim. Biophys. Acta 1488:211-218. https://doi.org/10.1016/S1388-1981(00)00124-4
  27. Nissen-Meyer, J. and Nes, I. F. 1997. Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch. Microbiol. 167:67-77. https://doi.org/10.1007/s002030050418
  28. Peypoux, F. and Michel, G. 1992. Controlled biosynthesis of Val7 and Leu7 surfactin. Appl. Microbiol. Biotechnol. 36:515-517.
  29. Peypoux, F., Bonmatin, J. M. and Wallach, J. 1999. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 51:553-563. https://doi.org/10.1007/s002530051432
  30. Phae, G. P., Shoda, S. and Kubota, K. 1990. Suppressive effect of Bacillus subtilis and its products on phytopathogenic microorganisms. J. Ferment. Bioeng. 69:1-7. https://doi.org/10.1016/0922-338X(90)90155-P
  31. Pleban, S., Ingel, F. and Chet, I. 1995. Control of Rhizoctonia solani and Sclerotium rolfsii in the greenhouse using endophytic Bacillus spp. Eur. J. Plant Pathol. 101:665-672. https://doi.org/10.1007/BF01874870
  32. Robert P. Ryan, Kieran Germaine, Ashley Franks, David J. Ryan and David N. Dowling. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278:1-9. https://doi.org/10.1111/j.1574-6968.2007.00918.x
  33. Rodrigo Mendes, Aline A. Pizzirani-Kleiner, Welington L. Araujo and Jos M. Raaijmakers. 2007. Diversity of cultivated endophytic bacteria from Sugarcane: Genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl. Environ. Microbiol. 73:7259-7267. https://doi.org/10.1128/AEM.01222-07
  34. Schulz, B., Boyle, C., Draeger, S., Rommert, A.-K. and Krohn, K. 2002. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol. Res. 106:996-1004. https://doi.org/10.1017/S0953756202006342
  35. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56:845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  36. Strobel, G. A. 2003. Endophytes as sources of bioactive products. Microbes. Infect. 5:535-544. https://doi.org/10.1016/S1286-4579(03)00073-X
  37. Sturz, A. V. and Matheson, B. G. 1996. Populations of endophytic bacteria which influence host-resistance to Erwinia-induced bacterial soft rot in potato tubers. Plant Soil 184:265-271. https://doi.org/10.1007/BF00010455
  38. Sturz, A. V., Christie, B. R. and Nowak, J. 2000. Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit. Rev. Plant Sci. 19:1-30. https://doi.org/10.1016/S0735-2689(01)80001-0
  39. Sturz, A. V., Christie, B. R., Matheson, B. G. and Nowak, J. 1997. Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol. Fert. Soils 25:13-19. https://doi.org/10.1007/s003740050273
  40. Sturz, A. V., Christie, B. R., Matheson, B. G. and Nowak, J. 1997. Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol. Fert. Soils 25:13-19. https://doi.org/10.1007/s003740050273
  41. Sturz, A. V. and Kinpinski, J. 2004. Endoroot bacteria derived from marigolds (Tagetes species) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant Soil. 262:241-249. https://doi.org/10.1023/B:PLSO.0000037046.86670.a3
  42. Tan, R. X. and W. X. Zou. 2001. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 18:448-459. https://doi.org/10.1039/b100918o
  43. Vater, J., Kablitz, B., Wilde, C., Franke, P., Mehta, N. and Cameotra, S. S. 2002. Matrix-assisted laser desorption ionizationtime of flight mass spectrometry of lipopeptide biosurfactins in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl. Environ. Microbiol. 68:6210-6219. https://doi.org/10.1128/AEM.68.12.6210-6219.2002
  44. Wang, J., Liu, J., Wang, X., Yao, J. and Yu, Z. 2004. Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by Bacillus subtilis. Lett. Appl. Microbiol. 39:98-102. https://doi.org/10.1111/j.1472-765X.2004.01547.x
  45. Wen, C. Y., Yin, Z. G., Chen, J. G. and Li, H. L. 2009. Identification of endophytic bacteria EBS05 from Cinamonum camphora and property of its antimicrobial compound. Microbiology 36:988-993.
  46. Wilson, D. 1995. Endophyte-The evolution of a term and clarification of its use and definition. Oikos 72:274-276.
  47. Yin, Z. G., Zhao, Y. H., Chen, J. G. and Wen, C. Y. 2009. Primary study on the anti-TMV activity of bioactive substance produced by plant endophytic bacteria EBS05. J. Xiangfan Univ. 30:78-81.
  48. Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K. and Shirata, A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91:181-187. https://doi.org/10.1094/PHYTO.2001.91.2.181

Cited by

  1. Saccharothrix yanglingensis Strain Hhs.015 Is a Promising Biocontrol Agent on Apple Valsa Canker vol.100, pp.2, 2016, https://doi.org/10.1094/PDIS-02-15-0190-RE