DOI QR코드

DOI QR Code

Isolation and Purification of an Antimicrobial Material from the Jellyfish Nemopilema nomurai

노무라 입깃 해파리(Nemopilema nomurai)로부터 항균활성물질의 분리 및 정제

  • Moon, Ho-Sung (Food Safety Research Division, National Fisheries Research and Development Institute) ;
  • Kim, Yeon-Kye (Food Safety Research Division, National Fisheries Research and Development Institute) ;
  • Lee, Moon-Hee (Food Safety Research Division, National Fisheries Research and Development Institute) ;
  • Yoon, Na-Young (Food Safety Research Division, National Fisheries Research and Development Institute) ;
  • Lee, Doo-Seog (Food Safety Research Division, National Fisheries Research and Development Institute) ;
  • Yoon, Ho-Dong (Food Safety Research Division, National Fisheries Research and Development Institute) ;
  • Seo, Jung-Kil (Department of Biotechnology, College of Fisheries Science, Pukyong National University) ;
  • Park, Nam-Gyu (Department of Biotechnology, College of Fisheries Science, Pukyong National University)
  • 문호성 (국립수산과학원 식품안전과) ;
  • 김연계 (국립수산과학원 식품안전과) ;
  • 이문희 (국립수산과학원 식품안전과) ;
  • 윤나영 (국립수산과학원 식품안전과) ;
  • 이두석 (국립수산과학원 식품안전과) ;
  • 윤호동 (국립수산과학원 식품안전과) ;
  • 서정길 (부경대학교 생물공학과) ;
  • 박남규 (부경대학교 생물공학과)
  • Received : 2011.07.18
  • Accepted : 2011.10.05
  • Published : 2011.10.31

Abstract

An antimicrobial material was purified from the acidified whole body extract of the jellyfish Nemopilema nomurai by using C18 reversed phase and cation-exchange high performance liquid chromatography (HPLC). Whole body extract and the purified compound (JAP-1) showed potent antimicrobial activities against a wide range of microorganisms including Escherichia coli D31, Bacillus subtilis, Streptococcus iniae and Candida albicans, without significant hemolytic activity. Treatment of JAP-1 with trypsin completely abolished all antibacterial activity against Bacillus subtilis, suggesting that JAP-1 is likely to be a proteinaceous antibiotic. The molecular weight of JAP-1 was determined to be 680.10 Da by MALDI-TOF mass spectroscopy.

Keywords

References

  1. Charlet M, Chernysh S, Philippe H, Hetru C, Hoffmann JA and Bulet P. 1996. Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusk, Mytilus edulis. J Biol Chem 271, 21808-21813. https://doi.org/10.1074/jbc.271.36.21808
  2. Destoumieux D, Bulet P, Loew D, Van DA, Rodriguez J and Bachere E. 1997. Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 272, 28398-28406. https://doi.org/10.1074/jbc.272.45.28398
  3. Falla TJ, Karunaratne DN and Hancock REW. 1996. Mode of action of the antimicrobial peptide indolicidin. J Biol Chem 271, 19298-19303. https://doi.org/10.1074/jbc.271.32.19298
  4. Frank RW, Gennaro R, Schneider K, Przybylski M and Romeo D. 1990, Amino acid sequence of two proline-rich bactenecins-antimicrobial peptides of bovine neutrophils. J Biol Chem 265, 18871-18874.
  5. Hancock REW and Diamond G. 2000. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 8, 402-410. https://doi.org/10.1016/S0966-842X(00)01823-0
  6. Hsieh YH P, Leong FM and Rudloe J. 2001. Jellyfish as food. Hydrobiologia 451, 11-17. https://doi.org/10.1023/A:1011875720415
  7. Iijima R, Kisugi J and Yamazaki M. 2003. A novel antimicrobial peptide from the sea hare Dolabella auricularia. Dev Comp Immunol 27, 305-311. https://doi.org/10.1016/S0145-305X(02)00105-2
  8. Kondejewski LH, Farmer SW, Wishart DS, Hancock REW and Hodges RS. 1996. Gramicidin S is active against both gram-positive and gram-negative bacteria. Int J Peptide protien Res 47, 460-466.
  9. Konno K, Hisada M, Fontana R, Lorenzi CCB, Haoki H, Itagaki Y, Miwa A, Kawai N, Nakata Y, Yasuhara T, Neto JR, Azevedo Jr WF, Palma MS and Nakajima T. 2001. Anoplin, a novel antimicrobial peptide from the venom of the solitary wasp Anoplius samariensis. Biochim Biophys Acta 1550, 70-80.
  10. Lehrer RI, Rosenman M, Harwig SSL, Jackson R and Eisenhaur P. 1991. Ultrasensitive assay for endogenous antimicrobial polypeptides. J Immunol Methods 137, 167-173. https://doi.org/10.1016/0022-1759(91)90021-7
  11. Li Y. 2009. The role of antimicrobial peptides in cardiovascular physiology and disease. Biochem Biophys Res commun 390, 363-367 https://doi.org/10.1016/j.bbrc.2009.10.002
  12. Lubke K, Matthes S and Kbss G. 1971. Isolation and structure of N-formyl melittin. Experientia 27, 765-767. https://doi.org/10.1007/BF02136852
  13. Matsunaga S, Fusetani N and Konosu S. 1985. Bioactive marine metabolites, IV. Isolation and the amino acid composition of discodermin A, an antimicrobial peptide, form the marine sponge Discodermia kiiensis. J Nat Prod 48, 236-241. https://doi.org/10.1021/np50038a006
  14. McLean LR, Hagaman KA, Owen TJ and Krstenansky JL. 1991. Minimal peptide length for interaction of amphipathic ${alpha}$-helical peptides with phosphatidylcholine liposomes. Biochemistry 30, 31-37. https://doi.org/10.1021/bi00215a005
  15. Mitta G, Hubert F, Dyrynda EA, Boudry P and Roch P. 2000. Mytilin B and MGD2, two antimicrobial peptides of marine mussels: gene structure and expression analysis. Dev Comp Immunol 24, 381-393. https://doi.org/10.1016/S0145-305X(99)00084-1
  16. Mitta G, Hubert F, Noel T and Roch P. 1999. Myticin, a novel cysteine-rich antimicrobial peptide isolated from haemocytes and plasma of the mussel Mytilus galloprovincialis. Eur J Biochem 265, 71-78. https://doi.org/10.1046/j.1432-1327.1999.00654.x
  17. Miyata T, Tokunaga F, Yoneya T, Yoshikawa K, Iwanaga S, Niwa M, Takao T and Shimonishi Y. 1989. Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II, and polyphemusins I and II: chemical structures and biological activity. J Biochem (Tokyo) 106, 663-668. https://doi.org/10.1093/oxfordjournals.jbchem.a122913
  18. Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sonksen CP, Ludvigsen S, Raventos D, Buskovl S, Christensen B, Marial LD, Taboureau O, Yaver D, Elvig-Jorgensen SG, Sorensen MV, Christensen BE, Kjaerulff S, Frimodt-Moller N, Lehrer RI, Zasloff M and Kristensen HH. 2005. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437, 975-980. https://doi.org/10.1038/nature04051
  19. Nagai T, Worawattanamateekul W, Suzuki N, Nakamura T, Ito T, Fujiki K, Nakao M and Yano T. 2000. Isolation and characterization of collagen from rhizostomous jellyfish (Rhopilema asamushi ). Food Chemistry 70, 205-208. https://doi.org/10.1016/S0308-8146(00)00081-9
  20. Ovchinnikova TV, Aleshina GM, Balandin SV, Krasnosdembskaya AD, Markelov ML, Frolova EI, Leonova YF, Tagaev AA, Krasnodembsky EG and Kokryakov VN. 2004. Purification and primary structure of two isoforms of arenicin, a novel antimicrobial peptide from marine polychaeta Arenicola marina. FEBS Lett 577, 209-214. https://doi.org/10.1016/j.febslet.2004.10.012
  21. Ovchinnikova TV, Balandin SV, Aleshina GM, Tagaev AA, Leonova YF, Krasnodembsky ED, Men'shenin AV and Kokryakov VN. 2006. Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochem Biophys Res Commun 348, 514-523. https://doi.org/10.1016/j.bbrc.2006.07.078
  22. Relf JM, Chisholm JRS, Kemp GD and Smith VJ. 1999. Purification and characterization of a cystein-rich 11.5-kDa antibacterial protein from the granular haemocytes of the shore crab, Carcinus maenas. Eur J Biochem 264, 350-357. https://doi.org/10.1046/j.1432-1327.1999.00607.x
  23. Saito T, Kawabata S, Shigenaga T, Takayenoki Y, Cho J, Nakajima H, Hirata M and Iwanaga S. 1995. A novel big defensin identified in horseshoe crab hemocytes: isolation, amino acid sequence, and antibacterial activity. J Biochem (Tokyo) 117, 1131-1137. https://doi.org/10.1093/oxfordjournals.jbchem.a124818
  24. Smith CB, Anderson JE, Fisher RL and Webb SR. 2002. Stability of green fluorescent protein using luminescence spectroscophy: is GFP applicable to field analysis of contaminants? Environmental Pollution 120, 517-520. https://doi.org/10.1016/S0269-7491(02)00227-0
  25. Tincu JA and Taylor SW. 2004. Antimicrobial peptides from marine invertebrates. Antimicrob Agents Chemother 48, 3645-3654. https://doi.org/10.1128/AAC.48.10.3645-3654.2004
  26. Wang C, Sun Z, Liu Y, Zhang X and Xu G. 2007. A novel antimicrobial vermipeptide family from earthworm Eisenia fetida. Eur J Biochem 43, S127-S134.

Cited by

  1. Physicochemical Characteristics of Salted Jellyfish Processed in Southeast Asia vol.47, pp.5, 2014, https://doi.org/10.5657/KFAS.2014.0482
  2. Food Component Characterization and Efficient Use of Jellyfish vol.47, pp.5, 2014, https://doi.org/10.5657/KFAS.2014.0459